1. Fundamentals of electrochemistry 2. Nanomaterials and their classification 3. The electrochemical mechanism and transport phenomenon of liquid fuel cells 4. The material development and characterization of direct alcohol fuel cells 5. Fundamentals of alcohol fuel cells 6. The electrocatalysts with pH of the electrolyte for the complete pathways of the oxidation reactions 7. Pt-based catalysts for alcohol oxidation 8. Monometallic nanomaterials for direct alcohol fuel cells 9. Bimetallic nanomaterials for direct alcohol fuel cells 10. Ternary/quaternary nanomaterials for direct alcohol fuel cells 11. Catalysts for high-temperature fuel cells operated by alcohol fuels 12. Porous materials for polymer electrolyte membrane fuel cells 13. Novel materials structures and compositions for alcohol oxidation reaction 14. Synthesis and characterization of nanocomposite membranes for high-temperature polymer electrolyte membranes (PEM) methanol fuel cells 15. Fabrication and properties of polymer electrolyte membranes (PEM) for direct methanol fuel cell application 16. Carbonaceous nanomaterials (carbon nanotubes, fullerenes, and nanofibers) for alcohol fuel cells 17. Carbon-based nanomaterials for alcohol fuel cells 18. Dendrimer-based nanocomposites for alcohol fuel cells 19. Metal organic framework-based nanocomposites for alcohol fuel cells 20. Carbon-polymer hybrid-supported nanomaterials for alcohol fuel cells 21. Polymer-based nanocatalysts for alcohol fuel cells 22. Different synthesis methods of nanomaterials for direct alcohol fuel cells 23. The synthesis and characterization of size-controlled bimetallic nanoparticles 24. The synthesis and characterization of size-controlled monometallic nanoparticles 25. Topics on the fundamentals of the alcohol oxidation reactions in acid and alkaline electrolytes 26. Direct alcohol-fed solid oxide fuel cells 27. Commercial aspects of direct alcohol fuel cells