• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Multivariate Reduced-Rank Regression: Theory, Methods and Applications » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Multivariate Reduced-Rank Regression: Theory, Methods and Applications

ISBN-13: 9781071627914 / Angielski / Miękka / 2022 / 411 str.

Gregory C. Reinsel; Raja P. Velu; Kun Chen
Multivariate Reduced-Rank Regression: Theory, Methods and Applications Gregory C. Reinsel Raja P. Velu Kun Chen 9781071627914 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Multivariate Reduced-Rank Regression: Theory, Methods and Applications

ISBN-13: 9781071627914 / Angielski / Miękka / 2022 / 411 str.

Gregory C. Reinsel; Raja P. Velu; Kun Chen
cena 441,75
(netto: 420,71 VAT:  5%)

Najniższa cena z 30 dni: 385,52
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance.This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.

This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance. This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9781071627914
Rok wydania:
2022
Dostępne języki:
Ilość stron:
411
Waga:
0.88 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

1. Multivariate Linear Regression.- 2. Reduced-Rank Regression Model.- 3. Reduced-Rank Regression Models with Two Sets of Regressors.- 4. Reduced-Rank Regression Model with Autoregressive Errors.- 5. Multiple Time Series Modeling with Reduced Ranks.- 6. The Growth Curve Model and Reduced-Rank Regression Methods.- 7. Seemingly Unrelated Regression Models with Reduced Ranks.- 8. Applications of Reduced-Rank Regression in Financial Economics.- 9. High-Dimensional Reduced-Rank Regression.- 10. Generalized Reduced-Rank Regression with Complex Data.- 11. Sparse and Low-Rank Regression. 12. Alternate Procedures for Analysis of Multivariate Regression Models.

Gregory C. Reinsel (now deceased) was Professor of Statistics at the University of Wisconsin, Madison. He was a fellow of the American Statistical Association. He also author of the book Elements of Multivariate Time Series Analysis, Second Edition, and coauthor, with G.E.P. Box and G.M. Jenkins, of the book Time Series Analysis: Forecasting and Control, Third Edition. Greg will remain the first author, in our gratitude.

Raja P. Velu taught business analytics and finance at Syracuse University. The first version of the book was mainly based on his thesis written under the supervision of Professor Reinsel and Professor Dean Wichern. He works in the big data models area with interest in high-dimensional time series and forecasting applications. His book, Algorithmic Trading and Quantitative Strategies, co-authored with practitioners from CITI and JP Morgan Chase, is published by Taylor and Francis. He was recently (2021–2022) a visiting researcher at Google working with the Resource Efficiency Data Science team.

Kun Chen is an associate professor in the Department of Statistics at the University of Connecticut. He is a Fellow of the American Statistical Association and an Elected Member of the International Statistical Institute. The first version of the book has had profound influence on his research since his PhD study at the University of Iowa under the supervision of Professor Kung-Sik Chan. His related work has resulted in many publications in statistics, machine learning, and scientific journals and the developed methods have been applied to tackle consequential problems in various fields including public health, ecology, and biological sciences.


This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.

This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance.

This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia