ISBN-13: 9781461348894 / Angielski / Miękka / 2012 / 670 str.
ISBN-13: 9781461348894 / Angielski / Miękka / 2012 / 670 str.
The time has come for an MTBE Remediation Handbook. There are hundreds of thousands of spills of gasoline containing MTBE in the United States. More than a billion dollars are spent each year to clean up spills of gasoline and manage the risk from existing contamination. Staff of the appropriate regula tory authorities within each state must make decisions to manage these spills on a site-by-site basis. Do they require active cleanup? How much cleanup is necessary? What is the most appropriate technology? What performance should be expected from the available technology? If the state regulators pro vide good answers to these questions on a site-by-site basis, the money will be well spent. This handbook is concerned with remediation of MTBE in existing spills. There are a number of myths about MTBE that act as impediments to effec tive remediation and risk management for MTBE. These myths present MTBE as being qualitatively different from petroleum hydrocarbons. Many still think that benzene is biodegradable in ground water while MTBE is not, that risk management is appropriate for benzene and not appropriate for MTBE, and that drinking water can be treated to remove benzene but not to remove MTBE. These myths have made us reluctant to deal with existing MTBE contamination. As is documented in this MTBE Remediation Handbook, we have the technology to clean up MTBE in a rational and economic man ner."
Section I—mtbe History, Properties, Occurrence, And Assessment.- 1. Introduction.- History of MTBE Use.- Tert Butyl Alcohol.- Gasoline Releases.- Underground Storage Tank (UST) Leaks and Overfills.- Spills.- Use in Watercraft.- Volatilization.- Summary.- references.- 2. Chemical and Physical Properties.- Boiling Temperature.- Specific Gravity.- Water Solubility.- Vapor Pressure.- Vapor Density.- Adsorption.- Henry’s Law Constant.- Summary.- References.- 3. Fate and Transport of MTBE and Other Gasoline Components.- Transport and Fate of Vapors of MTBE in the Unsaturated Zone.- Partitioning of MTBE from Gasoline Directly to Ground Water.- Separation of MTBE from BTEX Along a Flow Path.- Role of Dilution and Dispersion.- Role of Biodegradation of MTBE.- Production and Biodegradation of TBA.- False Attenuation: Missing the Plume with Monitoring Wells.- Missing the Plume: Plume Diving Behavior in Uniform Sand Aquifers.- Two Possible Life Cycles of Plumes.- The Plume Comes to Steady State, Then Recedes Back to the LNAPL.- The Plume Fails to Come to Steady State, and the Hot Spot Moves Downgradient.- Overview of Factors That Lead to Long MTBE Plumes.- Disclaimer.- References.- 4. MTBE Occurrence in Surface and Ground Water.- MTBE and the USGS NAWQA Program.- National MTBE Survey and the Northeastern and Mid-Atlantic States Study.- Northeast States for Coordinated Air Use Management (NESCAUM).- Midwestern States Study.- Individual State Studies.- MTBE Occurence in England and Wales.- Plume Length Studies.- History in California.- Conclusions.- References.- 5. Site Assessment.- Historical Assessment.- Identification of Receptors.- Initial Subsurface Investigation.- Utility Clearance.- Boring Advancement.- Well Development.- Ground Water Sample Collection.- Determination of Ground Water Flow Direction.- Methods of Soil and Ground Water Sample Collection.- Drilling and Soil Sample Collection.- Ground Water Sample Collection.- Soil and Ground Water Analytical Methods.- Geophysics.- Detailed Assessment.- Tracers.- Aquifer Tests.- Evaluation of Soil Gas and Indoor Air Migration Pathways.- Carbon Isotope Analysis.- Identifying Migration Pathways.- References.- 6. Laboratory Analysis of Oxygenated Gasoline Constituents.- Properties of Oxygenated Gasoline Components.- Sample Preservation Methods.- Sample Preparation Methods.- Separation of Volatiles from Aqueous Solution.- Concentration of Separated Volatiles.- Measurement Methods.- Optimum Methods for Analysis of Fuel Oxygenates in Ground Water.- Conclusions.- References.- 7. Risk Assessment.- Evaluating Human Health Risks.- Hazard Identification.- Dose-Response Assessment.- Exposure Assessment.- Risk Characterization.- Evaluating Ecological Risks.- European Risk Assessment of MTBE.- Risk Analysis Framework.- Summary.- References.- Section II—Applicable Remediation Technologies.- 8. Receptor Protection.- and Major Phases.- Receptors.- Receptor Threat.- Receptor Protection.- Technologies.- General.- Vapor Management.- Water Management.- Soil Management.- Conclusions.- References.- 9. Source Control.- Sources.- Tankhold.- Unsaturated Soils.- LNAPL.- Saturated Soils.- Remediation Technologies.- Tankhold.- Unsaturated Soils.- LNAPL.- Saturated Soils.- Conclusions.- References.- 10. Soil Vapor Extraction, Bioventing, and Air Sparging.- Gas-Based Technologies.- Soil Vapor Extraction.- Air Sparging.- Contaminant Considerations.- Volatility.- Biodegradability.- Soil Considerations.- Soil Permeability.- Water Saturation.- NAPL Saturation.- Geologic Considerations.- Fine-Grained Lenses.- Diversion of Airflow.- Heterogeneous Soils.- Airflow Considerations.- Maximizing Biodegradation.- Maximizing Volatilization.- Airflow and Pressure Relationships.- Zone of Influence and Well Spacing.- Modeling and Pilot Testing.- Summary of Extraction System Effectiveness.- Summary of Injection System Effectiveness.- Design Considerations.- Technology Selection.- Off-Gas Treatment.- Enhancements.- Pulsed Injection.- Injecting Gases Other than Air.- Adding Heat (Thermal).- Conclusions.- References.- 11. In Situ Chemical Oxidation.- Hydrogen Peroxide.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Ozone.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Permanganate.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Persulfate.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Ultrasound.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Ultrasound with Ozone.- Practical Design Considerations.- ISCO Costs.- Hydrogen Peroxide.- Ozone.- Permanganate.- Persulfate.- Ultrasound.- References.- 12. Aerobic In Situ Bioremediation.- Microbiology and Biochemistry of Aerobic MTBE Biodegradation.- Kinetics of Metabolism.- Biodegradation of MTBE, Petroleum Hydrocarbons, and Consumption of Oxygen.- Prospects for Biodegradation of MTBE in the Field by Native Microorganisms.- Remedial Technology for Ground Water.- Disclaimer.- References.- 13. Anaerobic In Situ Bioremediation.- Anaerobic Processes in Subsurface Sediment.- Anaerobic Bioremediation Strategies.- Anaerobic MTBE Biodegradation with Different Terminal Electron Acceptors.- Nitrate Reduction.- Fe(III) Reduction.- Sulfate Reduction.- Methanogenic Conditions.- Anaerobic TBA Biodegradation.- Implications for MTBE and TBA Bioremediation.- References.- 14. Phytoremediation of MTBE—A Review of the State of the Technology.- Case Studies.- University of Washington.- Kansas State University.- University of Iowa.- University of Colorado.- State of California Water Resources Control Board.- Conclusions and Future Work.- References.- 15. Ground Water Recovery and Treatment.- Perspective of Ground Water Recovery and Treatment.- Relationship to Potable Water.- Ground Water Recovery.- General.- Extraction.- Design.- Design Components.- Well Array Design.- Capture Zone Analysis.- Materials of Construction.- Typical Extraction Well Construction.- Trench Construction.- Optimization.- Reinjection/Infiltration.- Specialized Extraction Systems.- MTBE Specific Issues.- Ground Water Treatment.- Granular Activated Carbon (Liquid Phase).- Interferences.- Iron.- Manganese.- Total Organic Carbon.- Mineralization.- Coagulants and Additives.- Turbidity.- Co-contaminants.- Biological Growth.- Costs.- Resin Adsorption.- Air Stripping.- Stripping Technologies.- Packed Tower Stripper.- Low-Profile Air Stripper.- Diffused Aeration Stripper.- Mechanical Stripper.- Off-Gas Treatment.- Thermal and Catalytic Thermal Oxidation.- Granular Activated Carbon.- Biofilters.- Off-Gas Treatment Costs.- Interferences for Stripping.- Iron.- Manganese.- Mineralization.- Temperature.- MTBE Applications.- Bioreactors.- Activated Sludge.- Fixed-Film Reactors.- Fluidized Bed Bioreactor.- Membrane Separation (Reverse Osmosis).- Advanced Oxidation Processes.- Types of AOPS.- Fenton’s Reagent.- Peroxide — Ozone.- Cavitation/Sonication.- UV Driven Systems.- Electron Beams.- Limitations of AOPS.- Advantages of AOPS.- OtherAOPS.- Permanganate.- Costing Pump-and-Treat Systems.- References.- 16. Monitored Natural Attenuation of MTBE.- Background on Monitored Natural Attenuation.- The NRC Strategy for Evaluating Natural Attenuation.- MTBE and the NRC Report.- Recent Findings on MTBE and Natural Attenuation.- Aerobic Biodegradation.- Field Experience.- SAB Report.- Evidence on Anaerobic Biodegradation of MTBE.- Updating the NRC guidance for Natural Attenuation of MTBE.- Scientific Understanding.- Likelihood of Success.- Footprints.- Conclusions.- References.- Section III—Remediation Case Studies.- 17. Remedial Costs for MTBE in Soil and Ground Water.- Cost of Cleanup.- Cost Comparisons for MTBE and BTEX Remediations.- South Carolina Cost Data.- Remedial Technologies Used at USTS in New York State.- Efficiency of Remedial Technologies.- Summary.- Disclaimer.- Acknowledgment.- References.- 18. Remediation Experiences in Finland.- Background.- Legislation for Soil and Ground Water Protection in Finland.- Geology.- Aquifers and Water Service in Finland.- Gasoline Usage.- Fuel Handling at Retail Stations — Technology and Practices.- Practices in Soil and Ground Water Investigation and Risk Assessment at NESTE Sites.- Practices in Soil and Ground Water Remediation at NESTE Sites.- Cost of Remediation of Retail Sites in Finland.- Case Studies.- Case 1 — Traditional Practices, High Hopes, and Not Enough Information.- Case 2 — Traditional Approach and Methods Applied Successfully to Remediate a Service Station Site and Natural Spring.- Case 3 — Emergency Remediation Operation.- Forensic Findings — The Reasons for the Releases.- Lessons Learned.- 19. USEPA Case Studies Database for MTBE Remediation.- Purpose of Database.- Site Selection.- Site Characteristics.- Technology Variety.- Co-Contaminant Variety.- Trends.- Summary.- References.- 20. Remediation of Realeases Containing MTBE at Gasoline Station Sites—ENSR International’s Experience.- Why MTBE Makes a Difference and How Do We Exploit Its Properties for Remediation.- Remediation Technologies.- Recovery of MTBE in Soil.- Recovery of MTBE in Ground Water.- Treatment of MTBE.- Driving Forces to Site Remediation.- Technology Sequencing.- ENSR’s Experience Remediating MTBE.- Site-Specific Conditions.- Remediation Selection Factors.- Remediation Costs.- Future Trends in Remediation.- Compliance, Early Detection, and Quick Response.- Conclusions.- 21. Source Control and Point of Entry Treatment at a Massachusetts Site.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydrogeological Parameters.- Nature and Extent of Contamination.- Soil.- Ground Water.- Fate and Transport.- Receptors.- Ecological.- Human.- Exposure Potential.- Ecological.- Human.- Required Cleanup Levels and Timeframes.- Soil.- Ground Water.- Cleanup Timeframe.- Remedial Actions.- Source Removal.- Point of Entry Treatment.- Costs.- Timeline.- References.- 22. Physical Treatment at a New Hampshire Site.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydrogeological Parameters.- Nature and Extent of Contamination.- Soil.- Ground Water.- Fate and Transport.- Receptors.- Required Cleanup Levels and Timeframes.- Ground Water.- Soil.- Indoor Air.- Cleanup Timeframe.- Remedial Actions.- Immediate Response Actions.- Source Removal.- Physical Treatment.- SVE System.- Ground Water Recovery.- Air Sparging System.- Monitoring and Enhanced Bioremediation.- Costs.- Timeline.- References.- 23. Physical Treatment at a Massachusetts Site.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydogeological Parameters.- Nature and Extent of Contamination.- Soil.- Ground Water.- Fate and Transport.- Receptors.- Ecological.- Human.- Exposure Potential.- Ecological.- Human.- Required Cleanup Levels and Timeframes.- Soil.- Ground Water.- Cleanup Timeframe.- Remedial Actions.- Source Removal.- Physical Treatment.- Costs.- Timeline.- References.- 24. Strategic Pumping to Divert an MTBE/BTEX Plume from Municipal Water Supply Wells.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydrogeological Parameters.- Nature and Extent of Contamination.- Receptors.- Remedial Actions.- Cleanup Levels.- Costs.- Timeline.- References.- 25. Ozone Microbubble Sparging at a California Site.- Treatment Technology Overview — Ozone Oxidation and Microbubble Treatment.- Theory.- Oxidation Chemical Mechanisms.- Oxidant Application and Spread.- Site Description and Release History.- Previous Environmental Work.- Site Conditions.- Expected Oxidant Demand.- Stoichiometric VOC Demand.- Oxidizable Metals Demand.- Soil Demand.- Other Organics.- Total Ozone Demand.- Projected Time to Treat (Duration) Computation — Mass Basis.- Monitoring The VOC Decay.- Field Results.- Site Cost Comparison.- Conclusions and Recommendations.- References.- 26. MTBE Cleanup Technology Evaluations at the Port Hueneme NETTS.- Ground Water Circulation Well Environmental Cleanup Systems.- In Situ Air Sparging System.- Extraction of MTBE by a Hollow Fiber Membrane.- High Energy Electron Injection.- HiPOx Advanced Oxidation for the Remediation of MTBE.- In Situ Bioremediation of MTBE.- Direct Injection of a Bacterial Culture to Biodegrade MTBE-Impacted Ground Water.- Large-Scale Biobarrier Demonstration.- In Situ Remediation of MTBE Impacted Aquifer Using Propane Biostimulation.- Natural Attenuation of MTBE in An Anaerobic Ground Water Plume.- Natural Attenuation of MTBE in Ground Water Under Methanogenic Conditions.- 27. Bioremediation at a New Jersey Site Using Propane-Oxidizing Bacteria.- Methodology.- Site Characterization.- Microcosm Testing.- Field-Scale System Implementation and Operation.- Results.- Microcosm Studies.- Field Evaluation.- In Situ Biotreatment Summary.- Technology Costs.- References.- 28. Application of an In Situ Bioremedy Biobarrier at a Retail Gas Station.- Site Location and Geology/Hydrogeology.- Nature and Extent of Contamination and Potential Receptors.- Remediation.- Biobarrier.- Components of Biobarrier System.- Microbes.- Oxygen.- Monitoring Well System.- Site Application.- Field Pilot/Evaluation Test.- Microcosm Evaluation.- Oxygen Delivery.- MC Delivery.- Performance of the Bioremedy Biobarrier.- System Costs.- Timeline.- References.- 29. Ground Water Recovery and Bioreactor Treatment at a California Site.- Summary.- Site History.- Hydrology.- Remedial Activities.- Soil Excavation.- Overpurging.- Interim Enhanced Vacuum Extraction.- Remedial Design.- Results.- 30. Natural Attenuation of Tert Butyl Alcohol at a Texas Chemical Plant.- Previous Work on TBA Degradation.- Influence of TBA Properties on Natural Attenuation.- Site Description.- Plant II TBA Plume.- Natural Attenuation of TBA in the Plant II Area Plume.- Role of Diffusion in Plant II Area Plume Natural Attenuation.- Use of Carbon Isotopes to Document TBA Biodegradation.- Mechanisms of TBA Biodegradation.- Estimation of Natural Biodegradation Rates.- Conclusions.- Future Work.- References.- 31. Natural Attenuation of Benzene and MTBE at Four Midwestern U.S. Sites.- Trend Analysis Approach.- Geochemical Data.- Site A.- Hydrogeology.- Seasonality.- Trends.- Geochemical Conditions.- Site B.- Site C.- Site D.- Conclusions.- Recommendations.- References.- APPENDICES.- Appendix A—MTBE Occurrence in Surface and Ground Water Edited by James A.M. Thomson.- MTBE and the USGS’s NAWQA Program.- The NAWQA Program.- Program Status.- MTBE Data.- Patterns.- Conclusions.- Limitations.- Summary.- MTBE Occurrence in the United States.- National MTBE Survey.- Northeastern and Mid-Atlantic States.- Northeast States for Coordinated Air Use Management (NESCAUM).- Midwestern States Study.- Conclusions of the Midwestern States Study.- Additional State Studies.- Conclusions.- MTBE Occurrence in England and Wales.- Fuel Background.- Water Background.- Study Method.- Risk Assessment.- Conclusions.- Impacts.- Further Work.- Acknowledgement.- Plume Length Studies (Texas, Florida, and California).- Texas.- Florida.- California.- History of MTBE in California.- Comparison among Texas, Florida, and California.- Comparison of Plume Lengths for MTBE and BTEX at 212 South Carolina Sites.- Conclusions.- References.- Acronyms.- Appendix B—Primary Author Contact Information.- Acronyms.
1997-2025 DolnySlask.com Agencja Internetowa