• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Molecular Dynamics » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Molecular Dynamics

ISBN-13: 9783031370410 / Angielski / Twarda / 2023 / 383 str.

Ruben Santamaria
Molecular Dynamics Ruben Santamaria 9783031370410 Springer International Publishing AG - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Molecular Dynamics

ISBN-13: 9783031370410 / Angielski / Twarda / 2023 / 383 str.

Ruben Santamaria
cena 301,89
(netto: 287,51 VAT:  5%)

Najniższa cena z 30 dni: 289,13
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!
Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Science > Fizyka atomowa i molekularna
Science > Chemia - Fizyczna
Science > Fizyka matematyczna
Wydawca:
Springer International Publishing AG
Język:
Angielski
ISBN-13:
9783031370410
Rok wydania:
2023
Ilość stron:
383
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Dodatkowe informacje:
Wydanie ilustrowane

I BASICS OF

CLASSICAL MECHANICS


1 Principles of classical dynamics


1.1 Newtonian dynamics


1.2 Space and time


1.3 Mass


1.4 Energy


1.5 Electric charge


1.6 Reference system of coordinates


1.7 Newtonian time


1.8 Linear motion


1.9 Angular motion


1.10 Descriptions between inertial

reference frames


2 Foundations of Newtonian dynamics


2.1 First Newton’s law


2.2 Second Newton’s law


2.3 Third Newton’s law


2.4 Reduced mass of a two-particle

system


2.5 Time reversibility


2.6 Angular momentum and torque


2.7 Impulse, work and power


2.8 Kinetic and potential energies


2.9 Energy conservation


3 Many-particle systems


3.1 Reference frame of a

many-particle system


3.2 Angular momentum and torque of a

many-particle system


3.3 Mechanical energies of a many-particle

system


3.4 Transformation of the energy

components


3.5 Energy balance equation


3.6 Statistical and time averages of

physical observables


3.7 Ergodic hypothesis


3.8 Breaking the ergodic hypothesis


3.9 Velocity distribution function


3.10 Temperature of a system of

particles


3.11 Temperature scaling as a

thermostat


3.12 Temperature fluctuations


3.13 Pressure and volume


3.14 The virial and the equation of

state


4 Mechanical descriptors


4.1 Caloric curve


4.2 Interatomic distance

fluctuations


4.3 Root mean square deviation of

positions


4.4 Orientational order parameter


4.5 Pair correlation distribution

function


4.6 Correlation functions


4.7 Properties of correlation

functions


4.8 Vibrational spectra from

autocorrelation functions


5 Rigid body


5.1 Angular momentum of a rotating

system of particles


5.2 External torques acting on a

rotating body


5.3 Total energy of a rotating rigid

body


6 Analytical Mechanics


6.1 Action function


6.2 Principle of stationary action


6.3 Classifying molecular systems


6.4 Lagrange’s equations of motion


6.5 Newtonian equations of motion

from Lagrange theory


6.6 Non-uniqueness of the Lagrangian


6.7 Invariance of the Lagrange

equations of motion


6.8 Motion with constraints


6.9 Hamilton’s function


6.10 Preservation of the Hamiltonian

in time


6.11 Conserved observables and

symmetries


6.12 Space homogeneity


6.13 Space isotropy


6.14 Uniform passage of time


6.15 Hamilton’s equations of motion


6.16 Invariance under canonical

transformations


6.17 Time reversibility in

Hamiltonian theory


6.18 Hamilton-Jacobi theory


6.19 Illustrating with the harmonic

oscillator


6.20 Contact between quantum and

classical mechanics


6.21 Poisson’s brackets


6.22 Classical time propagator


II BASICS OF QUANTUM MECHANICS


7 Wave-particle duality of matter


7.1 Young’s experiment


7.2 Interference of waves


7.3 Photo-electron experiment


7.4 Compton’s experiment


7.5 Davisson-Germer’s experiment


7.6 De Broglie’s hypothesis


7.7 Bohr’s complementary principle


8 Quantization of the energy


8.1 Planck’s energy equation


8.2 Blackbody radiation experiment


8.3 Rayleigh-Jeans law


8.4 Wien’s displacement law


8.5 Ultraviolet catastrophe


8.6 Planck’s law


8.7 Franck-Hertz experiment


8.8 Heisenberg’s uncertainty

principle


8.9 Appendix: Planck’s radiation

intensity law


9 Quantization of the angular

momentum


9.1 Orbital angular momentum and

spin


9.2 Characterizing a particle with

spin


9.3 Stern-Gerlach experiment


9.4 Wave-particle duality and spin

of a particle


9.5 Fermions and bosons


9.6 Pauli’s exclusion principle and

Hund’s rule


9.7 Appendix: magnetic moment


9.7.1 Electric current in a circular

loop


9.7.2 Magnetic g factor


9.7.3 Magnetic energy and magnetic

work


9.7.4 Zeeman effect


9.7.5 Electron spin


9.7.6 Paschen-Back effect


9.7.7 Applications of the spin

resonance technique


10 Postulates of quantum mechanics


10.1 Reformulating the conceptual

world


10.2 Postulates of quantum mechanics


10.2.1 First postulate


10.2.2 Second postulate


10.2.3 Third postulate


10.2.4 Fourth postulate


10.2.5 Fifth postulate


10.2.6 Sixth postulate


10.3 Stationary states


10.4 Superposition principle of

quantum states


10.5 Bohr’s correspondence principle


10.6 Selection rules


10.7 Pauli’s principle in the

electronic wave function


10.8 Wave function of the electrons

in a molecule


10.9 Variational principle of the

energy


10.10 Appendix: proposing the wave

equation for matter waves


10.11 Appendix: expansion of a determinantal

wave function


III FIRST-PRINCIPLES MOLECULAR

DYNAMICS


11 Dynamics of electrons and nuclei


11.1 The electronic and nuclear

dynamics are coupled


11.2 The molecular Hamiltonian


11.3 Approximating the total wave

function 20611.4 The time-dependent self-consistent field equations


12 Classical limit of the nuclear

motion


12.1 Polar form of the nuclear wave

equation


12.2 Continuity and Hamilton-Jacobi

equations


12.3 Conditions to describe the nuclear

particles classically


12.4 Simplification of the nuclear

potential


12.5 Parameterizing the potential

function


12.6 Total energy of the molecular

system


12.7 Establishing the accuracy of

atomic forces


12.8 Diffusion from the continuity

equation


12.9 Diffusion equation and particle

flux


12.10 Expansion of the electronic

wave equation


12.11 Expansion of the Newtonian

equation of the nuclei


12.12 Appendix: the Bohm’s quantum

potential


IV CLASSICAL MOLECULAR DYNAMICS


13 Classical molecular dynamics


13.1 Model interaction potentials


13.2 Forcefields


13.3 Atom types


13.4 The united atom


13.5 Bond elongation and compression


13.6 Combination rules


13.7 Bond angle vibration


13.8 Plane bending


13.9 Angle inversion


13.10 Torsional motion


13.11 Electrostatic interaction


13.12 Van der Waals forces


13.13 Interaction potential

functions of water


13.14 Polarizability of atoms


13.15 External fields and potentials


13.16 Parameterization of forcefields


13.17 Model potentials of

non-biological systems


13.18 Sutton-Chen potential function


13.19 Gupta potential function


13.20 Tersoff potential function


13.21 Appendix: harmonic model of

the dispersion energy


14 Extended systems


14.1 Fixed and flexible boundaries


14.2 Periodic boundary conditions


14.3 The P BC system is an open

system


14.4 Electrostatics in the P BC approach


14.5 Ewald sum approach


14.6 Using the Poisson equation


14.7 Short-range interactions


14.8 Dealing with the electrostatic

self-interaction


14.9 Long-range interactions


14.10 Ewald electrostatic energy


14.11 Smooth particle mesh Ewald

approach


14.12 Shifted potentials and forces


V TIME EVOLUTION OPERATORS


15 Integrating the equations of

motion


15.1 The Liouville operator as a

time propagator


15.2 Discretizing the time

propagator


15.3 Evolving positions and momenta


15.4 Simplified time integrators


15.5 Leapfrog algorithm


15.6 Verlet algorithm


15.7 Bond constraints   

Ruben Santamaria is originally from California, United States. He studied physics at UNAM and earned his doctorate degree in Molecular Physics from the University of Oxford. He did postdoctoral studies in Molecular Biophysics at Northwestern University in Chicago. He has vast experience as a researcher and works at the Physics Institute of the University of Mexico (UNAM). He has given talks at various national and international institutions and taught courses in his specialty. His research focuses mainly on developing methodologies in atomic and molecular physics, and proposing new processes with applications to nanostructured systems and molecular biophysics, using the latest technological tools in computing and artificial intelligence.

This molecular dynamics textbook takes the reader from classical mechanics to quantum mechanics and vice versa, and from few-body systems to many-body systems. It is self-contained, comprehensive, and builds the theory of molecular dynamics from basic principles to applications, allowing the subject to be appreciated by readers from physics, chemistry, and biology backgrounds while maintaining mathematical rigor. The book is enhanced with  illustrations, problems and solutions, and suggested reading, making it ideal for undergraduate and graduate  courses or self-study. With coverage of recent developments, the book is essential reading for  students who explore and characterize phenomena at the atomic level. It is  a useful reference for researchers in physics and chemistry, and can act as an entry point for researchers in nanoscience, materials engineering, genetics, and related fields who are seeking a deeper understanding of nature.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia