• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Modern Deep Learning for Tabular Data: Novel Approaches to Common Modeling Problems » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2944077]
• Literatura piękna
 [1814251]

  więcej...
• Turystyka
 [70679]
• Informatyka
 [151074]
• Komiksy
 [35590]
• Encyklopedie
 [23169]
• Dziecięca
 [611005]
• Hobby
 [136031]
• AudioBooki
 [1718]
• Literatura faktu
 [225599]
• Muzyka CD
 [379]
• Słowniki
 [2916]
• Inne
 [443741]
• Kalendarze
 [1187]
• Podręczniki
 [166463]
• Poradniki
 [469211]
• Religia
 [506887]
• Czasopisma
 [481]
• Sport
 [61343]
• Sztuka
 [242115]
• CD, DVD, Video
 [3348]
• Technologie
 [219293]
• Zdrowie
 [98602]
• Książkowe Klimaty
 [124]
• Zabawki
 [2385]
• Puzzle, gry
 [3504]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7151]
Kategorie szczegółowe BISAC

Modern Deep Learning for Tabular Data: Novel Approaches to Common Modeling Problems

ISBN-13: 9781484286913 / Angielski / Miękka / 2022 / 842 str.

Andre Ye; Andy Wang
Modern Deep Learning for Tabular Data: Novel Approaches to Common Modeling Problems Andre Ye Andy Wang 9781484286913 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Modern Deep Learning for Tabular Data: Novel Approaches to Common Modeling Problems

ISBN-13: 9781484286913 / Angielski / Miękka / 2022 / 842 str.

Andre Ye; Andy Wang
cena 231,17
(netto: 220,16 VAT:  5%)

Najniższa cena z 30 dni: 228,02
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

Deep learning is one of the most powerful tools in the modern artificial intelligence landscape. While having been predominantly applied to highly specialized image, text, and signal datasets, this book synthesizes and presents novel deep learning approaches to a seemingly unlikely domain – tabular data. Whether for finance, business, security, medicine, or countless other domain, deep learning can help mine and model complex patterns in tabular data – an incredibly ubiquitous form of structured data.Part I of the book offers a rigorous overview of machine learning principles, algorithms, and implementation skills relevant to holistically modeling and manipulating tabular data. Part II studies five dominant deep learning model designs – Artificial Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Attention and Transformers, and Tree-Rooted Networks – through both their ‘default’ usage and their application to tabular data. Part III compounds the power of the previously covered methods by surveying strategies and techniques to supercharge deep learning systems: autoencoders, deep data generation, meta-optimization, multi-model arrangement, and neural network interpretability. Each chapter comes with extensive visualization, code, and relevant research coverage.Modern Deep Learning for Tabular Datais one of the first of its kind – a wide exploration of deep learning theory and applications to tabular data, integrating and documenting novel methods and techniques in the field. This book provides a strong conceptual and theoretical toolkit to approach challenging tabular data problems.What You Will LearnImportant concepts and developments in modern machine learning and deep learning, with a strong emphasis on tabular data applications.Understand the promising links between deep learning and tabular data, and when a deep learning approach is or isn’t appropriate.Apply promising research and unique modeling approaches in real-world data contexts.Explore and engage with modern, research-backed theoretical advances on deep tabular modelingUtilize unique and successful preprocessing methods to prepare tabular data for successful modelling.Who This Book Is ForData scientists and researchers of all levels from beginner to advanced looking to level up results on tabular data with deep learning or to understand the theoretical and practical aspects of deep tabular modeling research. Applicable to readers seeking to apply deep learning to all sorts of complex tabular data contexts, including business, finance, medicine, education, and security.

Deep learning is one of the most powerful tools in the modern artificial intelligence landscape. While having been predominantly applied to highly specialized image, text, and signal datasets, this book synthesizes and presents novel deep learning approaches to a seemingly unlikely domain – tabular data. Whether for finance, business, security, medicine, or countless other domain, deep learning can help mine and model complex patterns in tabular data – an incredibly ubiquitous form of structured data.Part I of the book offers a rigorous overview of machine learning principles, algorithms, and implementation skills relevant to holistically modeling and manipulating tabular data. Part II studies five dominant deep learning model designs – Artificial Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Attention and Transformers, and Tree-Rooted Networks – through both their ‘default’ usage and their application to tabular data. Part III compounds the power of the previously covered methods by surveying strategies and techniques to supercharge deep learning systems: autoencoders, deep data generation, meta-optimization, multi-model arrangement, and neural network interpretability. Each chapter comes with extensive visualization, code, and relevant research coverage.Modern Deep Learning for Tabular Data is one of the first of its kind – a wide exploration of deep learning theory and applications to tabular data, integrating and documenting novel methods and techniques in the field. This book provides a strong conceptual and theoretical toolkit to approach challenging tabular data problems.


What You Will Learn
  • Important concepts and developments in modern machine learning and deep learning, with a strong emphasis on tabular data applications.
  • Understand the promising links between deep learning and tabular data, and when a deep learning approach is or isn’t appropriate.
  • Apply promising research and unique modeling approaches in real-world data contexts.
  • Explore and engage with modern, research-backed theoretical advances on deep tabular modeling
  • Utilize unique and successful preprocessing methods to prepare tabular data for successful modelling.
Who This Book Is For
Data scientists and researchers of all levels from beginner to advanced looking to level up results on tabular data with deep learning or to understand the theoretical and practical aspects of deep tabular modeling research. Applicable to readers seeking to apply deep learning to all sorts of complex tabular data contexts, including business, finance, medicine, education, and security.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Information Theory
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484286913
Rok wydania:
2022
Dostępne języki:
Ilość stron:
842
Waga:
1.47 kg
Wymiary:
25.4 x 17.78 x 4.39
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

○      Section 1: Machine Learning and Tabular Data

■      Chapter 1 – Introduction to Machine Learning

■      Chapter 2 – Data Tools

○      Section 2: Applied Deep Learning Architectures

■      Chapter 3 – Artificial Neural Networks

■      Chapter 4 – Convolutional Neural Networks

■      Chapter 5 – Recurrent Neural Networks

■      Chapter 6 – Attention Mechanism

■      Chapter 7 – Tree-based Neural Networks

○      Section 3: Deep Learning Design and Tools

■      Chapter 8 – Autoencoders

■      Chapter 9 – Data Generation

■      Chapter 10 – Meta-optimization

■      Chapter 11 – Multi-model arrangement

■      Chapter 12 – Deep Learning Interpretability

○      Appendix A

Andre Ye is a deep learning researcher with a focus on building and training robust medical deep computer vision systems for uncertain, ambiguous, and unusual contexts. He has published another book with Apress, Modern Deep Learning Design and Applications, and writes short-form data science articles on his blog. In his spare time, Andre enjoys keeping up with current deep learning research and jamming to hard metal. 

Andy Wang is a researcher and technical writer passionate about data science and machine learning. With extensive experiences in modern AI tools and applications, he has competed in various professional data science competitions while gaining hundreds and thousands of views across his published articles. His main focus lies in building versatile model pipelines for different problem settings including tabular and computer-vision related tasks. At other times while Andy is not writing or programming, he has a passion for piano and swimming.

Deep learning is one of the most powerful tools in the modern artificial intelligence landscape. While having been predominantly applied to highly specialized image, text, and signal datasets, this book synthesizes and presents novel deep learning approaches to a seemingly unlikely domain – tabular data. Whether for finance, business, security, medicine, or countless other domain, deep learning can help mine and model complex patterns in tabular data – an incredibly ubiquitous form of structured data.

Part I of the book offers a rigorous overview of machine learning principles, algorithms, and implementation skills relevant to holistically modeling and manipulating tabular data. Part II studies five dominant deep learning model designs – Artificial Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Attention and Transformers, and Tree-Rooted Networks – through both their ‘default’ usage and their application to tabular data. Part III compounds the power of the previously covered methods by surveying strategies and techniques to supercharge deep learning systems: autoencoders, deep data generation, meta-optimization, multi-model arrangement, and neural network interpretability. Each chapter comes with extensive visualization, code, and relevant research coverage.

Modern Deep Learning for Tabular Data is one of the first of its kind – a wide exploration of deep learning theory and applications to tabular data, integrating and documenting novel methods and techniques in the field. This book provides a strong conceptual and theoretical toolkit to approach challenging tabular data problems.

You will:

  • Gain insight into important concepts and developments in modern machine learning and deep learning, with a strong emphasis on tabular data applications.
  • Understand the promising links between deep learning and tabular data, and when a deep learning approach is or isn’t appropriate.
  • Apply promising research and unique modeling approaches in real-world data contexts.
  • Explore and engage with modern, research-backed theoretical advances on deep tabular modeling
  • Utilize unique and successful preprocessing methods to prepare tabular data for successful modelling.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia