'Finally, an excellent introductory graduate text for the modern era of quantum condensed matter physics! Girvin and Yang deftly describe the transformative advances in the field, highlighting the close connection between theory and experiment. Highly recommended to all, from physics students to researchers seeking to reset their foundations.' Subir Sachdev, Harvard University, Massachusetts
Preface; Acknowledgements; 1. Overview of condensed matter physics; 2. Spatial structure; 3 Lattices and symmetries; 4. Neutron scattering; 5. Dynamics of lattice vibrations; 6. Quantum theory of harmonic crystals; 7. Electronic structure of crystals; 8. Semiclassical transport theory; 9. Semiconductors; 10. Non-local transport in mesoscopic systems; 11. Anderson localization; 12. Integer quantum Hall effect; 13. Topology and Berry phase; 14. Topological insulators and semimetals; 15. Interacting electrons; 16. Fractional quantum Hall effect; 17. Magnetism; 18. Bose–Einstein condensation and superuidity; 19. Superconductivity: basic phenomena and phenomenological theories; 20. Microscopic theory of superconductivity; Appendix A. Linear response theory; Appendix B. The Poisson summation formula; Appendix C. Tunneling and scanning tunneling microscopy; Appendix D. Brief primer on topology; Appendix E. Scattering matrices, unitarity and reciprocity; Appendix F. Quantum entanglement in condensed matter physics; Appendix G. Linear reponse and noise in electrical circuits; Appendix H. Functional differentiation; Appendix I. Low-energy effective hamiltonians; Appendix J. Introduction to second quantization; Bibliography; Index.
Girvin, Steven M.
Steven M. Girvin received his B.S. in 1971 from Bates College and his Ph.D. in 1977 from Princeton University. He joined the Yale University faculty in 2001, where he is Eugene Higgins Professor of Physics and Professor of Applied Physics. From 2007 to 2017 he served as Deputy Provost for Research. His research interests focus on theoretical condensed matter physics, quantum optics and quantum computation; he is co-developer of the circuit QED paradigm for quantum computation. His honours include: Fellow of American Physical Society, American Association for the Advancement of Science, American Academy of Arts and Sciences; Foreign Member of the Royal Swedish Academy of Sciences, Member US National Academy of Sciences; Oliver E. Buckley Prize of the American Physical Society (2007); Honorary doctorate, Chalmers University of Technology (2017); Conde Award for Teaching Excellence (2003).
Yang, Kun
Kun Yang received his B.S. in 1989 from Fudan University and his Ph.D. in 1994 from Indiana University. He joined the faculty of Florida State University in 1999 where he is now Mckenzie Professor of Physics. His research focuses on many-particle physics in condensed matter and trapped cold atom systems. His honours include: Fellow of American Physical Society, American Association for the Advancement of Science, Alfred Sloan Research Fellowship (1999), Outstanding Young Researcher Award, Overseas Chinese Physics Association (2003).