General Introduction to Modern Bayesian Statistics
Chapter 2
Traditional Bayes: Diagnostic Tests, Genetic Research, Bayes and Drug Trials
Chapter 3
Bayesian Tests for One Sample Continuous Data
Chapter 4
Bayesian Tests for One Sample Binary Data
Chapter 5
Bayesian Paired T-Tests
Chapter 6
Bayesian Unpaired T-Tests
Chapter 7
Bayesian Regressions
Chapter 8
Bayesian Analysis of Variance (Anova)
Chapter 9
Bayesian Loglinear Regression
Chapter 10
Bayesian Poisson Rate Analysis
Chapter 11
Bayesian Pearson Correlations
Chapter 12
Bayesian Statistics: Markov Chain Monte Carlo Sampling
Chapter 13
Bayes and Causal Relationships
Chapter 14
Bayesian Network
Index
The authors are well-qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015), and Professor Cleophas is past-president of the American College of Angiology (2000-2002).
Professor Zwinderman is one of the Principle Investigators of the Academic Medical Center Amsterdam, and his research is concerned with developing statistical methods for new research designs in biomedical science, particularly integrating omics data, like genomics, proteomics, metabolomics, and analysis tools based on parallel computing and the use of cluster computers and grid computing.
Professor Cleophas is a member of the Academic Committee of the European College of Pharmaceutical Medicine, that provides, on behalf of 22 European Universities, the Master-ship trainings "Pharmaceutical Medicine" and "Medicines Development".
From their expertise they should be able to make adequate selections of modern methods for clinical data analysis for the benefit of physicians, students, and investigators. The authors have been working and publishing together for 18 years, and their research can be characterized as a continued effort to demonstrate that clinical data analysis is not mathematics but rather a discipline at the interface of biology and mathematics.
The authors as professors and teachers in statistics at universities in The Netherlands and France for the most part of their lives, are concerned, that their students find regression-analyses harder than any other methodology in statistics. This is serious, because almost all of the novel methodologies in current data mining and data analysis include elements of regression-analysis, and they do hope that the current production "Regression Analysis for Starters and 2nd Levelers" will be a helpful companion for the purpose.
Five textbooks complementary to the current production and written by the same authors are
Statistics applied to clinical studies 5th edition, 2012,
Machine learning in medicine a complete overview, 2015,
SPSS for starters and 2nd levelers 2nd edition, 2015,
Clinical data analysis on a pocket calculator 2nd edition, 2016,
Modern Meta-analysis, 2017
Regression Analysis in Medical Research, 2018
all of them published by Springer
The current textbook has been written as a help to medical / health professionals and students for the study of modern Bayesian statistics, where posterior and prior odds have been replaced with posterior and prior likelihood distributions. Why may likelihood distributions better than normal distributions estimate uncertainties of statistical test results? Nobody knows for sure, and the use of likelihood distributions instead of normal distributions for the purpose has only just begun, but already everybody is trying and using them. SPSS statistical software version 25 (2017) has started to provide a combined module entitled Bayesian Statistics including almost all of the modern Bayesian tests (Bayesian t-tests, analysis of variance (anova), linear regression, crosstabs etc.).
Modern Bayesian statistics is based on biological likelihoods, and may better fit clinical data than traditional tests based normal distributions do. This is the first edition to systematically imply modern Bayesian statistics in traditional clinical data analysis. This edition also demonstrates that Markov Chain Monte Carlo procedures laid out as Bayesian tests provide more robust correlation coefficients than traditional tests do. It also shows that traditional path statistics are both textually and conceptionally like Bayes theorems, and that structural equations models computed from them are the basis of multistep regressions, as used with causal Bayesian networks.