• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Model Predictive Control » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Model Predictive Control

ISBN-13: 9783540762416 / Angielski / Miękka / 1999 / 280 str.

Carlos Bordons Alba
Model Predictive Control Carlos Bordons Alba 9783540762416 Springer-Verlag Berlin and Heidelberg GmbH &  - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Model Predictive Control

ISBN-13: 9783540762416 / Angielski / Miękka / 1999 / 280 str.

Carlos Bordons Alba
cena 408,11
(netto: 388,68 VAT:  5%)

Najniższa cena z 30 dni: 404,63
Termin realizacji zamówienia:
ok. 10-14 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

In recent years Model Predictive Control (MPC) schemes have established themselves as the preferred control strategy for a large number of processes. Their ability to handle constraints and multivariable processes and their intuitive way of posing the pro cess control problem in the time domain are two reasons for their popularity. This volume by authors of international repute provides an extensive review concerning the theoretical and practical aspects of predictive controllers. It describes the most commonly used MPC strategies, especially Generalised Predictive Control (GPC), showing both their theoretical properties and their practical implementation issues. Topics such as multivariable MPC, constraint handling, stability and robustness properties are thoroughly analysed in this text.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Automation
Computers > Artificial Intelligence - General
Computers > Computer Simulation
Wydawca:
Springer-Verlag Berlin and Heidelberg GmbH &
Seria wydawnicza:
Advanced Textbooks in Control and Signal Processing
Język:
Angielski
ISBN-13:
9783540762416
Rok wydania:
1999
Dostępne języki:
Angielski
Wydanie:
1999. Corr. 2nd
Numer serii:
000123335
Ilość stron:
280
Waga:
0.48 kg
Wymiary:
23.523.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

From the reviews of the second edition:

"This text is an introduction to model predictive control, a control methodology which has encountered some success in industry, but which still presents many theoretical challenges. ... The book is of interest as an introduction to model predictive control, and a merit is the special presentation, connecting the subject intimately with industrial situations." (A. Akutowicz, Zentralblatt MATH, Vol. 1080, 2006)

"It is a much more ambitious work, seeking to inform practitioners how to implement MPC while at the same time serving as an advanced student text as well as reference for control researchers. ... The authors clearly see the text as a teaching aid since several chapters include exercises. ... In summary, a significant contribution to this important field for control academics, and some highly experienced MPC practitioners ... ." (Michael Brisk, www.tcetoday.com, February, 2008)

1 Introduction to Model Based Predictive Control.- 1.1 MPC Strategy.- 1.2 Historical Perspective.- 1.3 Industrial Technology.- 1.4 Outline of the Chapters.- 2 Model Based Predictive Controllers.- 2.1 MPC Elements.- 2.1.1 Prediction Model.- 2.1.2 Objective Function.- 2.1.3 Obtaining the Control Law.- 2.2 Review of some MPC Algorithms.- 2.3 Nonlinear Predictive Control.- 2.3.1 Nonlinear Models.- 2.3.2 Techniques for Nonlinear Predictive Control.- 3 Commercial Model Predictive Control Schemes.- 3.1 Dynamic Matrix Control.- 3.1.1 Prediction.- 3.1.2 Measurable Disturbances.- 3.1.3 Control Algorithm.- 3.2 Model Algorithmic Control.- 3.2.1 Process Model and Prediction.- 3.2.2 Control Law.- 3.2.3 Multivariable Processes.- 3.3 Predictive Functional Control.- 3.3.1 Formulation.- 3.4 Case Study: a Water Heater.- 4 Generalized Predictive Control.- 4.1 Introduction.- 4.2 Formulation of Generalized Predictive Control.- 4.3 The Coloured Noise Case.- 4.4 An Example.- 4.5 Closed Loop Relationships.- 4.6 The Role of the T polynomial.- 4.6.1 Selection of the T Polynomial.- 4.6.2 Relationships with other Formulations.- 4.7 The P Polynomial.- 4.8 Consideration of Measurable Disturbances.- 4.9 Use of a Different Predictor in GPC.- 4.9.1 Equivalent Structure.- 4.9.2 A Comparative Example.- 4.10 Constrained Receding-Horizon Predictive Control.- 4.10.1 Computation of the Control Law.- 4.10.2 Properties.- 4.11 Stable GPC.- 4.11.1 Formulation of the Control Law.- 5 Simple Implementation of GPC for Industrial Processes.- 5.1 Plant Model.- 5.1.1 Plant Identification: The Reaction Curve Method.- 5.2 The Dead Time Multiple of Sampling Time Case.- 5.2.1 Discrete Plant Model.- 5.2.2 Problem Formulation.- 5.2.3 Computation of the Controller Parameters.- 5.2.4 Role of the Control-Weighting Factor.- 5.2.5 Implementation Algorithm.- 5.2.6 An Implementation Example.- 5.3 The Dead Time non Multiple of the Sampling Time Case.- 5.3.1 Discrete Model of the Plant.- 5.3.2 Controller Parameters.- 5.3.3 Example.- 5.4 Integrating Processes.- 5.4.1 Derivation of the Control Law.- 5.4.2 Controller Parameters.- 5.4.3 Example.- 5.5 Consideration of Ramp Setpoints.- 5.5.1 Example.- 5.6 Comparison with Standard GPC.- 5.7 Stability Robustness Analysis.- 5.7.1 Structured Uncertainties.- 5.7.2 Unstructured Uncertainties.- 5.7.3 General Comments.- 5.8 Composition Control in an Evaporator.- 5.8.1 Description of the Process.- 5.8.2 Obtaining the Linear Model.- 5.8.3 Controller Design.- 5.8.4 Results.- 6 Multivariable MPC.- 6.1 Derivation of Multivariable GPC.- 6.1.1 White Noise Case.- 6.1.2 Coloured Noise Case.- 6.1.3 Measurable Disturbances.- 6.2 Obtaining a Matrix Fraction Description.- 6.2.1 Transfer Matrix Representation.- 6.2.2 Parametric Identification.- 6.3 State Space Formulation.- 6.3.1 Matrix Fraction and State Space Equivalences.- 6.4 Dead Time Problems.- 6.5 Example: Distillation Column.- 6.6 Application of DMC to a Chemical Reactor.- 6.6.1 Plant Description.- 6.6.2 Obtaining the Plant Model.- 6.6.3 Control Law.- 6.6.4 Simulation Results.- 7 Constrained MPC.- 7.1 Constraints and MPC.- 7.1.1 Illustrative Examples.- 7.2 Constraints and optimization.- 7.3 Revision of Main Quadratic Programming Algorithms.- 7.3.1 The Active Set Methods.- 7.3.2 Feasible Directions Methods.- 7.3.3 Initial Feasible Point.- 7.3.4 Pivoting Methods.- 7.4 Constraints Handling.- 7.4.1 Slew Rate Constraints.- 7.4.2 Amplitude Constraints.- 7.4.3 Output Constraints.- 7.4.4 Constraints Reduction.- 7.5 1-norm.- 7.6 Case study : a Compressor.- 7.7 Constraint Management.- 7.7.1 Feasibility.- 7.7.2 Techniques for Improving Feasibility.- 7.8 Constrained MPC and Stability.- 7.9 Multiobjective MPC.- 7.9.1 Priorization of Objectives.- 8 Robust MPC.- 8.1 Process Models and Uncertainties.- 8.1.1 Truncated Impulse Response Uncertainties.- 8.1.2 Matrix Fraction Description Uncertainties.- 8.1.3 Global Uncertainties.- 8.2 Objective Functions.- 8.2.1 Quadratic Norm.- 8.2.2 ? — ? norm.- 8.2.3 1-norm.- 8.3 Illustrative Examples.- 8.3.1 Bounds on the Output.- 8.3.2 Uncertainties in the Gain.- 8.4 Robust MPC and Linear Matrix Inequalities.- 9 Applications.- 9.1 Solar Power Plant.- 9.1.1 Self tuning GPC Control Strategy.- 9.1.2 Gain scheduling Generalized Predictive Control.- 9.2 Pilot Plant.- 9.2.1 Plant Description.- 9.2.2 Plant Control.- 9.2.3 Flow Control.- 9.2.4 Temperature Control at the Exchanger Output.- 9.2.5 Temperature Control in the Tank.- 9.2.6 Level Control.- 9.2.7 Remarks.- 9.3 Model Predictive Control in a Sugar Refinery.- A Revision of the Simplex method.- A.1 Equality Constraints.- A.2 Finding an Initial Solution.- A.3 Inequality Constraints.- References.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia