• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Medical Image Computing and Computer Assisted Intervention - Miccai 2019: 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceed » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Medical Image Computing and Computer Assisted Intervention - Miccai 2019: 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceed

ISBN-13: 9783030322502 / Angielski / Miękka / 2019 / 809 str.

Dinggang Shen; Tianming Liu; Terry M. Peters
Medical Image Computing and Computer Assisted Intervention - Miccai 2019: 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceed Shen, Dinggang 9783030322502 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Medical Image Computing and Computer Assisted Intervention - Miccai 2019: 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceed

ISBN-13: 9783030322502 / Angielski / Miękka / 2019 / 809 str.

Dinggang Shen; Tianming Liu; Terry M. Peters
cena 201,24
(netto: 191,66 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Informatyka
Kategorie BISAC:
Computers > Software Development & Engineering - Computer Graphics
Computers > Artificial Intelligence - Computer Vision & Pattern Recognition
Medical > Informatics
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783030322502
Rok wydania:
2019
Wydanie:
2019
Ilość stron:
809
Waga:
1.16 kg
Wymiary:
23.39 x 15.6 x 4.27
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Shape.- A CNN-Based Framework for Statistical Assessment of Spinal Shape and Curvature in Whole-Body MRI Images of Large Populations.- Exploiting Reliability-guided Aggregation for the Assessment of Curvilinear Structure Tortuosity.- A Surface-theoretic Approach for Statistical Shape Modeling.- Shape Instantiation from A Single 2D Image to 3D Point Cloud with One-stage Learning.- Placental Flattening via Volumetric Parameterization with Dirichlet Energy Regularization.- Fast Polynomial Approximation to Heat Diffusion in Manifolds.- Hierarchical Multi-Geodesic Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates.- Clustering of longitudinal shape data sets using mixture of separate or branching trajectories.- Group-wise Graph Matching of Cortical Gyral Hinges.- Multi-view Graph Matching of Cortical Landmarks.- Patient-specific Conditional Joint Models of Shape, Image Features and Clinical Indicators.- Surface-Based Spatial Pyramid Matching of Cortical Regions for Analysis of Cognitive Performance.- Prediction.- Diagnosis-guided multi-modal feature selection for prognosis prediction of lung squamous cell carcinoma.- Graph convolution based attention model for personalized disease prediction.- Predicting Early Stages of Neurodegenerative Diseases via Multi-task Low-rank Feature Learning.- Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments Over Progressions.- Deep Granular Feature-Label Distribution Learning for Neuroimaging-based Infant Age Prediction.- End-to-End Dementia Status Prediction from Brain MRI using Multi-Task Weakly-Supervised Attention Network.- Unified Modeling of Imputation, Forecasting, and Prediction for AD Progression.- LSTM Network for Prediction of Hemorrhagic Transformation in Acute Stroke.- Inter-modality Dependence Induced Data Recovery for MCI Conversion Prediction.- Preprocessing, Prediction and Significance: Framework and Application to Brain Imaging.- Early Prediction of Alzheimer's Disease progression using Variational Autoencoder.- Integrating Heterogeneous Brain Networks for Predicting Brain Disease Conditions.- Detection and Localization.- Uncertainty-informed detection of epileptogenic brain malformations using Bayesian neural networks.- Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network.- Intracranial aneurysms detection in 3D cerebrovascular mesh model with ensemble deep learning.- Automated Noninvasive Seizure Detection and Localization Using Switching Markov Models and Convolutional Neural Networks.- Multiple Landmarks Detection using Multi-Agent Reinforcement Learning.- Spatiotemporal Breast Mass Detection Network (MD-Net) in 4D DCE-MRI Images.- Automated Pulmonary Embolism Detection from CTPA Images using an End-to-End Convolutional Neural Network.- Pixel-wise anomaly ratings using Variational Auto-Encoders.- HR-CAM: Precise Localization of pathology using multi-level learning in CNNs.- Novel Iterative Attention Focusing Strategy for Joint Pathology Localization and Diagnosis of MCI Progression.- Automatic Vertebrae Recognition from Arbitrary Spine MRI images by a Hierarchical Self-calibration Detection Framework.- Machine Learning.- Image data validation for medical systems.- Captioning Ultrasound Images Automatically.- Feature Transformers: Privacy Preserving Life Learning Framework for Healthcare Applications.- As easy as 1, 2... 4? Uncertainty in counting tasks for medical imaging.- Generalizable Feature Learning in the Presence of Data Bias and Domain Class Imbalance with Application to Skin Lesion Classification.- Learning task-specific and shared representations in medical imaging.- Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis.- Efficient Ultrasound Image Analysis Models with Sonographer Gaze Assisted Distillation.- Fetal Pose Estimation in Volumetric MRI using 3D Convolution Neural Network.- Multi-Stage Prediction Networks for Data Harmonization.- Self-supervised Feature Learning for 3D Medical Images by Playing a Rubik's Cube.- Bayesian Volumetric Autoregressive generative models for better semisupervised learning with scarce Medical imaging data.- Data Augmentation for Regression Neural Networks.- A Dirty Multi-task Learning Method for Multi-modal Brain Imaging Genetics.- Robust and Discriminative Brain Genome Association Analysis.- Symmetric Dual Adversarial Connectomic Domain Alignment for Predicting Isomorphic Brain Graph From a Baseline Graph.- Harmonization of Infant Cortical Thickness using Surface-to-Surface Cycle-Consistent Adversarial Networks.- Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference.- Computer-aided Diagnosis.- Multi Scale Curriculum CNN for Context-Aware Breast MRI Malignancy Classification.- Deep Angular Embedding and Feature Correlation Attention for Breast MRI Cancer Analysis.- Fully Deep Learning for Slit-lamp Photo based Nuclear Cataract Grading.- Overcoming Data Limitation in Medical Visual Question Answering.- Multi-Instance Multi-Scale CNN for Medical Image Classification.- Improving Uncertainty Estimation in Convolutional Neural Networks Using Inter-rater Agreement.- Improving Skin Condition Classification with a Visual Symptom Checker Trained using Reinforcement Learning.- DScGANS: Integrate Domain Knowledge in Training Dual-Path Semi-Supervised Conditional Generative Adversarial Networks and S3VM for Ultrasonography Thyroid Nodules Classification.- Similarity steered generative adversarial network and adaptive transfer learning for malignancy characterization of hepatocellualr carcinoma.- Unsupervised Clustering of Quantitative Imaging Subtypes using Autoencoder and Gaussian Mixture Model.- Adaptive Sparsity Regularization Based Collaborative Clustering for Cancer Prognosis.- Coronary Artery Plaque Characterization from CCTA Scans using Deep Learning and Radiomics.- Response Estimation through Spatially Oriented Neural Network and Texture Ensemble (RESONATE).- STructural Rectal Atlas Deformation (StRAD) features for characterizing intra- and peri-wall chemoradiation response on MRI.- Dynamic Routing Capsule Networks for Mild Cognitive Impairment Diagnosis.- Deep Multi-modal Latent Representation Learning for Automated Dementia Diagnosis.- Dynamic Spectral Convolution Networks with Assistant Task Training for Early MCI diagnosis.- Bridging Imaging, Genetics, and Diagnosis in a Coupled Low-Dimensional Framework.- Global and Local Interpretability for Cardiac MRI Classification.- Let's agree to disagree: learning highly debatable multirater labelling.- Coidentifciation of group-level hole structures in brain networks via Hodge Laplacian.- Confident Head Circumference Measurement from Ultrasound with Real-time Feedback for Sonographers.- Image Reconstruction and Synthesis.- Detection and Correction of Cardiac MRI Motion Artefacts during Reconstruction from k-space.- Exploiting motion for deep learning reconstruction of extremely-undersampled dynamic MRI.- VS-Net: Variable spitting network for accelerated parallel MRI reconstruction.- A Novel Loss Function Incorporating Imaging Acquisition Physics for PET Attenuation Map Generation using Deep Learning.- A Prior Learning Network for Joint Image and Sensitivity Estimation in Parallel MR Imaging.- Consensus Neural Network for Medical Image Denoising with Only Noisy Training Samples.- Consistent Brain Ageing Synthesis.- Hybrid Generative Adversarial Networks for Deep MR to CT Synthesis using Unpaired Data.- Arterial Spin Labeling Images Synthesis via Locally-constrained WGAN-GP Ensemble.- SkrGAN: Sketching-rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis.- Wavelet-Based Semi-Supervised Adversarial Learning for Synthesizing Realistic 7T from 3T MRI.- DiamondGAN: Unified Multi-Modal Generative Adversarial Networks for MRI Sequences Synthesis.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia