• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Mechanical Vibrations and Waves: Analysis and Control » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Mechanical Vibrations and Waves: Analysis and Control

ISBN-13: 9781119135043 / Angielski / Twarda / 2023 / 480 str.

Chunhui Mei
Mechanical Vibrations and Waves: Analysis and Control Mei, Chunhui 9781119135043 Wiley-Blackwell (an imprint of John Wiley & S - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Mechanical Vibrations and Waves: Analysis and Control

ISBN-13: 9781119135043 / Angielski / Twarda / 2023 / 480 str.

Chunhui Mei
cena 486,15 zł
(netto: 463,00 VAT:  5%)

Najniższa cena z 30 dni: 483,49 zł
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Mechanical Wave Vibrations: Analysis, Control and Applications presents a wave analysis approach to the control of vibration in structures, as opposed to the modal-based approach. The wave-based approach has a distinct advantage over the modal-based approach in the control of vibration in highly flexible structures and will therefore help to better prepare future engineers for solving practical vibration problems. Mechanical Wave Vibrations: Analysis, Control and Applications begins with an introduction to the fundamental concepts including wave versus modal vibration description, before comprehensively covering the wave vibration analysis approach. Vibration control strategies from the wave standpoint are then explored and various application examples of the wave vibration technique are presented. Application examples include use in non-destructive structural health monitoring; and wave and finite element vibration analysis. Supporting material is available on a companion website.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Drafting & Mechanical Drawing
Science > Mechanics - General
Wydawca:
Wiley-Blackwell (an imprint of John Wiley & S
Język:
Angielski
ISBN-13:
9781119135043
Rok wydania:
2023
Dostępne języki:
Ilość stron:
480
Oprawa:
Twarda
Dodatkowe informacje:
Bibliografia

Preface xiAcknowledgement xiiiAbout the Companion Website xv1 Sign Conventions and Equations of Motion Derivations 11.1 Derivation of the Bending Equations of Motion by Various Sign Conventions 11.1.1 According to Euler-Bernoulli Bending Vibration Theory 21.1.2 According to Timoshenko Bending Vibration Theory 71.2 Derivation of the Elementary Longitudinal Equation of Motion by Various Sign Conventions 101.3 Derivation of the Elementary Torsional Equation of Motion by Various Sign Conventions 122 Longitudinal Waves in Beams 152.1 The Governing Equation and the Propagation Relationships 152.2 Wave Reflection at Classical and Non-Classical Boundaries 162.3 Free Vibration Analysis in Finite Beams - Natural Frequencies and Modeshapes 202.4 Force Generated Waves and Forced Vibration Analysis of Finite Beams 242.5 Numerical Examples and Experimental Studies 272.6 MATLAB Scripts 323 Bending Waves in Beams 393.1 The Governing Equation and the Propagation Relationships 393.2 Wave Reflection at Classical and Non-Classical Boundaries 403.3 Free Vibration Analysis in Finite Beams - Natural Frequencies and Modeshapes 463.4 Force Generated Waves and Forced Vibration Analysis of Finite Beams 503.5 Numerical Examples and Experimental Studies 553.6 MATLAB Scripts 594 Waves in Beams on a Winkler Elastic Foundation 694.1 Longitudinal Waves in Beams 694.1.1 The Governing Equation and the Propagation Relationships 694.1.2 Wave Reflection at Boundaries 704.1.3 Free Wave Vibration Analysis 714.1.4 Force Generated Waves and Forced Vibration Analysis of Finite Beams 724.1.5 Numerical Examples 764.2 Bending Waves in Beams 794.2.1 The Governing Equation and the Propagation Relationships 794.2.2 Wave Reflection at Classical Boundaries 824.2.3 Free Wave Vibration Analysis 844.2.4 Force Generated Waves and Forced Wave Vibration Analysis 844.2.5 Numerical Examples 89ftoc.indd 7 29-06-2023 20:15:065 Coupled Waves in Composite Beams 975.1 The Governing Equations and the Propagation Relationships 975.2 Wave Reflection at Classical and Non-Classical Boundaries 1005.3 Wave Reflection and Transmission at a Point Attachment 1025.4 Free Vibration Analysis in Finite Beams - Natural Frequencies and Modeshapes 1045.5 Force Generated Waves and Forced Vibration Analysis of Finite Beams 1055.6 Numerical Examples 1085.7 MATLAB Script 1146 Coupled Waves in Curved Beams 1196.1 The Governing Equations and the Propagation Relationships 1196.2 Wave Reflection at Classical and Non-Classical Boundaries 1216.3 Free Vibration Analysis in a Finite Curved Beam - Natural Frequencies and Modeshapes 1276.4 Force Generated Waves and Forced Vibration Analysis of Finite Curved Beams 1286.5 Numerical Examples 1346.6 MATLAB Scripts 1437 Flexural/Bending Vibration of Rectangular Isotropic Thin Plates with Two Opposite Edges Simply-supported 1517.1 The Governing Equations of Motion 1517.2 Closed-form Solutions 1527.3 Wave Reflection, Propagation, and Wave Vibration Analysis Along the Simply-supported X Direction 1547.4 Wave Reflection, Propagation, and Wave Vibration Analysis Along the y Direction 1567.4.1 Wave Reflection at a Classical Boundary along the y Direction 1577.4.2 Wave Propagation and Wave Vibration Analysis along the y Direction 1597.5 Numerical Examples 1598 In-Plane Vibration of Rectangular Isotropic Thin Plates with Two Opposite Edges Simply-supported 1898.1 The Governing Equations of Motion 1898.2 Closed-form Solutions 1908.3 Wave Reflection, Propagation, and Wave Vibration Analysis along the Simply-supported X Direction 1928.3.1 Wave Reflection at a Simply-supported Boundary Along the X Direction 1928.3.2 Wave Propagation and Wave Vibration Analysis Along the X Direction 1958.4 Wave Reflection, Propagation, and Wave Vibration Analysis along the y Direction 1978.4.1 Wave Reflection at a Classical Boundary along the y Direction 1988.4.2 Wave Propagation and Wave Vibration Analysis along the y Direction 2018.5Special Situation of k 0 = 0: Wave Reflection, Propagation, and Wave Vibration Analysis along the y Direction 2018.5.1 Wave Reflection at a Classical Boundary along the y Direction Corresponding to a Pair of Type I Simple Supports Along the X Direction When K 0 = 0 2028.5.2 Wave Reflection at a Classical Boundary along the y Direction Corresponding to a Pair of Type II Simple Supports Along the X Direction When K 0 = 0 2038.5.3 Wave Propagation and Wave Vibration Analysis along the y Direction When k 0 = 0 2058.6 Wave Reflection, Propagation, and Wave Vibration Analysis with a Pair of Simply-supported Boundaries along the y Direction When k 0 <> 0 2078.6.1 Wave Reflection, Propagation, and Wave Vibration Analysis with a Pair of Simply-supported Boundaries along the y Direction When k 0 <> 0, k 1 <> 0, and k 2 <> 0 2078.6.2 Wave Reflection, Propagation, and Wave Vibration Analysis with a Pair of Simply-supported Boundaries along the y Direction When k 0 = 0, and either k 1 = 0 or k 2 = 0 2098.7 Numerical Examples 2128.7.1 Example 1: Two Pairs of the Same Type of Simple Supports Along the X and Y Directions 2128.7.2 Example 2: One Pair of the Same Type Simple Supports Along the X Direction, Various Combinations of Classical Boundaries on Opposite Edges along the y Direction 2178.7.3 Example 3: One Pair of Mixed Type Simple Supports Along the X Direction, Various Combinations of Classical Boundaries on Opposite Edges along the y Direction 2239 Bending Waves in Beams Based on Advanced Vibration Theories 2279.1 The Governing Equations and the Propagation Relationships 2279.1.1 Rayleigh Bending Vibration Theory 2279.1.2 Shear Bending Vibration Theory 2289.1.3 Timoshenko Bending Vibration Theory 2309.2 Wave Reflection at Classical and Non-Classical Boundaries 2329.2.1 Rayleigh Bending Vibration Theory 2329.2.2 Shear and Timoshenko Bending Vibration Theories 2389.3 Waves Generated by Externally Applied Point Force and Moment on the Span 2449.3.1 Rayleigh Bending Vibration Theory 2459.3.2 Shear and Timoshenko Bending Vibration Theories 2469.4 Waves Generated by Externally Applied Point Force and Moment at a Free End 2479.4.1 Rayleigh Bending Vibration Theory 2489.4.2 Shear and Timoshenko Bending Vibration Theories 2499.5 Free and Forced Vibration Analysis 2509.5.1 Free Vibration Analysis 2509.5.2 Forced Vibration Analysis 2509.6 Numerical Examples and Experimental Studies 2529.7 MATLAB Scripts 25710 Longitudinal Waves in Beams Based on Various Vibration Theories 26310.1 The Governing Equations and the Propagation Relationships 26310.1.1 Love Longitudinal Vibration Theory 26310.1.2 Mindlin-Herrmann Longitudinal Vibration Theory 26410.1.3 Three-mode Longitudinal Vibration Theory 26510.2 Wave Reflection at Classical Boundaries 26710.2.1 Love Longitudinal Vibration Theory 26710.2.2 Mindlin-Herrmann Longitudinal Vibration Theory 26810.2.3 Three-mode Longitudinal Vibration Theory 26910.3 Waves Generated by External Excitations on the Span 27110.3.1 Love Longitudinal Vibration Theory 27110.3.2 Mindlin-Herrmann Longitudinal Vibration Theory 27210.3.3 Three-mode Longitudinal Vibration Theory 27310.4 Waves Generated by External Excitations at a Free End 27510.4.1 Love Longitudinal Vibration Theory 27510.4.2 Mindlin-Herrmann Longitudinal Vibration Theory 27610.4.3 Three-mode Longitudinal Vibration Theory 27610.5 Free and Forced Vibration Analysis 27710.5.1 Free Vibration Analysis 27810.5.2 Forced Vibration Analysis 27810.6 Numerical Examples and Experimental Studies 28111 Bending and Longitudinal Waves in Built-up Planar Frames 28711.1 The Governing Equations and the Propagation Relationships 28711.2 Wave Reflection at Classical Boundaries 28911.3 Force Generated Waves 29111.4 Free and Forced Vibration Analysis of a Multi-story Multi-bay Planar Frame 29211.5 Reflection and Transmission of Waves in a Multi-story Multi-bay Planar Frame 30411.5.1 Wave Reflection and Transmission at an L-shaped Joint 30411.5.2 Wave Reflection and Transmission at a T-shaped Joint 30811.5.3 Wave Reflection and Transmission at a Cross Joint 31512 Bending, Longitudinal, and Torsional Waves in Built-up Space Frames 32912.1 The Governing Equations and the Propagation Relationships 32912.2 Wave Reflection at Classical Boundaries 33312.3 Force Generated Waves 33612.4 Free and Forced Vibration Analysis of a Multi-story Space Frame 33812.5 Reflection and Transmission of Waves in a Multi-story Space Frame 34112.5.1 Wave Reflection and Transmission at a Y-shaped Spatial Joint 34312.5.2 Wave Reflection and Transmission at a K-shaped Spatial Joint 35313 Passive Wave Vibration Control 36913.1 Change in Cross Section or Material 36913.1.1 Wave Reflection and Transmission at a Step Change by Euler-Bernoulli Bending Vibration Theory 37113.1.2 Wave Reflection and Transmission at a Step Change by Timoshenko Bending Vibration Theory 37213.2 Point Attachment 37313.2.1 Wave Reflection and Transmission at a Point Attachment by Euler-Bernoulli Bending Vibration Theory 37413.2.2 Wave Reflection and Transmission at a Point Attachment by Timoshenko Bending Vibration Theory 37513.3 Beam with a Single Degree of Freedom Attachment 37613.4 Beam with a Two Degrees of Freedom Attachment 37813.5 Vibration Analysis of a Beam with Intermediate Discontinuities 38013.6 Numerical Examples 38113.7 MATLAB Scripts 39014 Active Wave Vibration Control 40114.1 Wave Control of Longitudinal Vibrations 40114.1.1 Feedback Longitudinal Wave Control on the Span 40114.1.2 Feedback Longitudinal Wave Control at a Free Boundary 40514.2 Wave Control of Bending Vibrations 40714.2.1 Feedback Bending Wave Control on the Span 40714.2.2 Feedback Bending Wave Control at a Free Boundary 41014.3 Numerical Examples 41314.4 MATLAB Scripts 416Index 421

Chunhui Mei is a Professor in the Department of Mechanical Engineering at the University of Michigan-Dearborn. She has over twenty years' research and teaching experience on vibrations, controls, and instrumentation and measurement systems. She served as an Associate Editor for ASME Journal of Vibration and Acoustics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia