• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Maximal Abelian Sets of Roots » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2948695]
• Literatura piękna
 [1824038]

  więcej...
• Turystyka
 [70868]
• Informatyka
 [151073]
• Komiksy
 [35227]
• Encyklopedie
 [23181]
• Dziecięca
 [621575]
• Hobby
 [138961]
• AudioBooki
 [1642]
• Literatura faktu
 [228651]
• Muzyka CD
 [371]
• Słowniki
 [2933]
• Inne
 [445341]
• Kalendarze
 [1243]
• Podręczniki
 [164416]
• Poradniki
 [479493]
• Religia
 [510449]
• Czasopisma
 [502]
• Sport
 [61384]
• Sztuka
 [243086]
• CD, DVD, Video
 [3417]
• Technologie
 [219673]
• Zdrowie
 [100865]
• Książkowe Klimaty
 [124]
• Zabawki
 [2168]
• Puzzle, gry
 [3372]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7838]
Kategorie szczegółowe BISAC

Maximal Abelian Sets of Roots

ISBN-13: 9781470426798 / Angielski

R. Lawther
Maximal Abelian Sets of Roots R. Lawther   9781470426798 American Mathematical Society - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Maximal Abelian Sets of Roots

ISBN-13: 9781470426798 / Angielski

R. Lawther
cena 328,15
(netto: 312,52 VAT:  5%)

Najniższa cena z 30 dni: 323,47
Termin realizacji zamówienia:
ok. 30 dni roboczych.

Darmowa dostawa!

In this work the author lets $Phi$ be an irreducible root system, with Coxeter group $W$. He considers subsets of $Phi$ which are abelian, meaning that no two roots in the set have sum in $Phi cup { 0 }$. He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of $W$: for each $W$-orbit of maximal abelian sets we provide an explicit representative $X$, identify the (setwise) stabilizer $W_X$ of $X$ in $W$, and decompose $X$ into $W_X$-orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian $p$-subgroups of finite groups of Lie type over fields of characteristic $p$. Parts of the work presented here have been used to confirm the $p$-rank of $E_8(p^n)$, and (somewhat unexpectedly) to obtain for the first time the $2$-ranks of the Monster and Baby Monster sporadic groups, together with the double cover of the latter. Root systems of classical type are dealt with quickly here; the vast majority of the present work concerns those of exceptional type. In these root systems the author introduces the notion of a radical set; such a set corresponds to a subgroup of a simple algebraic group lying in the unipotent radical of a certain maximal parabolic subgroup. The classification of radical maximal abelian sets for the larger root systems of exceptional type presents an interesting challenge; it is accomplished by converting the problem to that of classifying certain graphs modulo a particular equivalence relation.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Matematyka
Wydawca:
American Mathematical Society
Język:
Angielski
ISBN-13:
9781470426798

  • Introduction
  • Root systems of classical type
  • The strategy for root systems of exceptional type
  • The root system of type $G_2$
  • The root system of type $F_4$
  • The root system of type $E_6$
  • The root system of type $E_7$
  • The root system of type $E_8$
  • Tables of maximal abelian sets
  • Appendix A. Root trees for root systems of exceptional type
  • Bibliography.


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia