'This text strikes just the right balance between mathematical rigor and applications for engineers and mathematical scientists. Numerous applications show the natural connection between discreet and continuous models and their mathematical counterparts-matrix methods and differential equations.' Joel A. Storch, California State University, Northridge
Part I. Matrix Methods: 1. Vector and matrix algebra; 2. Algebraic eigenproblems and their applications; 3. Differential eigenproblems and their applications; 4. Vector and matrix calculus; 5. Analysis of discrete dynamical systems; Part II. Numerical Methods: 6. Computational linear algebra; 7. Numerical methods for differential equations; 8. Finite-difference methods for boundary-value problems; 9. Finite-difference methods for initial-value problems; Part III. Least Squares and Optimization: 10. Least-squares methods; 11. Data analysis – curve fitting and interpolation; 12. Optimization and root finding of algebraic systems; 13. Data-driven methods and reduced-order modeling.