• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Mathematik Für Das Erste Semester: Analysis Und Lineare Algebra Für Studierende Der Ingenieurwissenschaften » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Mathematik Für Das Erste Semester: Analysis Und Lineare Algebra Für Studierende Der Ingenieurwissenschaften

ISBN-13: 9783662619919 / Niemiecki / Miękka / 2020 / 388 str.

Mike Scherfner; Torsten Volland
Mathematik Für Das Erste Semester: Analysis Und Lineare Algebra Für Studierende Der Ingenieurwissenschaften Scherfner, Mike 9783662619919 Springer Spektrum - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Mathematik Für Das Erste Semester: Analysis Und Lineare Algebra Für Studierende Der Ingenieurwissenschaften

ISBN-13: 9783662619919 / Niemiecki / Miękka / 2020 / 388 str.

Mike Scherfner; Torsten Volland
cena 131,95 zł
(netto: 125,67 VAT:  5%)

Najniższa cena z 30 dni: 126,07 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Mathematical Analysis
Mathematics > Algebra - Liniowa
Wydawca:
Springer Spektrum
Język:
Niemiecki
ISBN-13:
9783662619919
Rok wydania:
2020
Wydanie:
2. Aufl. 2020
Ilość stron:
388
Waga:
0.57 kg
Wymiary:
23.39 x 15.6 x 2.13
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Einige Worte vorab.-I Analysis.-1 Worum geht es in der Analysis?.-2 Ein wenig Vorbereitung.2.1 Motivation.2.2 Ein Vorrat an Buchstaben.2.3 Vom richtigen Umgang mit der Aussagenlogik.2.4 Vollständige Induktion.2.5 Mengen.2.6 Aufgaben.2.7 Lösungen.-3 Reelle und komplexe Zahlen.3.1 Motivation.3.2 Reelle Zahlen.3.3 Summen und Produkte.3.4 Komplexe Zahlen.3.5 Aufgaben.3.6 Lösungen.-4 Abbildungen und Funktionen.4.1 Motivation und Definitionen.4.2 Einige Eigenschaften von Abbildungen.4.3 Komposition von Abbildungen.4.4 Darstellung von Funktionen.4.5 Aufgaben.4.6 Lösungen.-5 Wichtige Funktionen im Überblick.-5.1 Motivation.5.2 Polynome und rationale Funktionen.5.3 Sinus, Kosinus und Tangens.5.4 Exponentialfunktion und Logarithmus.5.5 Weitere wichtige Funktionen.5.6 Aufgaben.5.7 Lösungen.-6 Folgen.6.1 Motivation.6.2 Grundlagen.6.3 Konvergenz und Divergenz.6.4 Rechenregeln für Folgen.6.5 Das Monotoniekriterium.6.6 Was noch über Folgen gewusst werden sollte.6.7 Das Häufungspunktprinzip und mehr.6.8 Aufgaben.6.9 Lösungen.-7 Reihen.7.1 Motivation.7.2 Grundlegendes zu Reihen.7.3 Eigenschaften von Reihen.7.4 Konvergenzkriterien.7.5 Aufgaben.7.6 Lösungen.-8 Stetigkeit.8.1 Motivation.8.2 Grundlagen zur Stetigkeit.8.3 Zusammensetzung stetiger Funktionen.8.4 Der Zwischenwertsatz.8.5 Supremum, Infimum, Maximum und Minimum.8.6 Maximum und Minimum für stetige Funktionen.8.7 Aufgaben.8.8 Lösungen.-9 Differenziation.9.1 Motivation.9.2 Grundlagen zur Differenziation.9.3 Rechenregeln für Ableitungen.9.4 Der Mittelwertsatz und Folgerungen daraus.9.5 Höhere Ableitungen.9.6 Ausflug: Sinus, Kosinus und Exponentialfunktion.9.7 Die Regel von l’Hospital.9.8 Aufgaben.9.9 Lösungen.-10 Potenzreihen.10.1 Motivation.10.2 Grundlegendes zu Potenzreihen.10.3 Aufgaben.10.4 Lösungen.-11 Taylorpolynome, Taylorreihen und Extremwerte.11.1 Motivation.11.2 Taylorpolynom und Taylorreihe.11.3 Lokale Extrema differenzierbarer Funktionen.11.4 Aufgaben.11.5 Lösungen.-12 Integration.12.1 Motivation.12.2 Grundlagen zur Integration.12.3 Der Hauptsatz.12.4 Wichtige Regeln zur Integration.12.5 Das uneigentliche Integral.12.6 Aufgaben.12.7 Lösungen.-13 Ausblick: Fourierreihen.13.1 Motivation.13.2 Grundlagen zu Fourierreihen.13.3 Komplexe Darstellung der Fourierreihe.-II Lineare Algebra.-14 Worum geht es in der Linearen Algebra?.-15 Vektorräume, lineare Unabhängigkeit.15.1 Motivation.15.2 Vektorräume.15.3 Der Vektorraum der reellen Zahlen.15.4 Der Vektorraum reellwertiger Funktionen auf R.15.5 Linearkombinationen.15.6 Aufgaben.15.7 Lösungen.-16 Lineare Abbildungen und Matrizen.16.1 Motivation.16.2 Grundlagen zu linearen Abbildungen.16.3 Kern und Bild.16.4 Grundlegendes zu Matrizen.16.5 Rechnen mit Matrizen.16.6 Besondere Matrizen.16.7 Aufgaben.16.8 Lösungen.-17 Lineare Gleichungssysteme.17.1 Motivation und elementare Anwendungen.17.2 Grundlagen.17.3 Gauß-Algorithmus.17.4 Die Struktur der Lösungsmenge.17.5 Zum Invertieren von Matrizen.17.6 Aufgaben.17.7 Lösungen.-18 Determinanten.18.1 Motivation.18.2 Definition und Berechnung.18.3 Geometrische Interpretation.18.4 Rechenregeln für die Determinante.18.5 Das Kreuzprodukt.18.6 Aufgaben.18.7 Lösungen.-19 Norm und Skalarprodukt.19.1 Motivation.19.2 Die Norm.19.3 Das Skalarprodukt.19.4 Orthonormalisierung nach Schmidt.19.5 Orthogonale Matrizen.19.6 Aufgaben.19.7 Lösungen.-20 Basiswechsel und darstellende Matrizen.20.1 Motivation.20.2 Koordinatenvektoren.20.3 Darstellung linearer Abbildungen durch Matrizen.20.4 Matrixtransformation bei einem Basiswechsel.20.5 Aufgaben.20.6 Lösungen.-21 Eigenwerte und Eigenvektoren.21.1 Motivation.21.2 Grundlagen.21.3 Berechnung der Eigenwerte.21.4 Berechnung der Eigenvektoren.21.5 Vielfachheiten.21.6 Hauptvektoren.21.7 Diagonalisierbarkeit.21.8 Aufgaben.21.9 Lösungen.-22 Differenzialgleichungen.22.1 Motivation.22.2 Grundlagen.22.3 Umschreiben in ein System am Beispiel.22.4 Einige Fragestellungen und erste Antworten.22.5 Lösen durch Integration.22.6 Standardlösungsansatz I.22.7 Standardlösungsansatz II.22.8 Finden einer partikulären Lösung.22.9 Anfangswertprobleme.22.10 Wronski-Test.22.11 Beispiel für nicht-lineare Differentialgleichungen.22.12Aufgaben.22.13 Lösungen.-III Klausuraufgaben.-23 Analysis.-24 Lineare Algebra.-Vom Umgang mit Prüfungen.-Literatur und Schlussbemerkungen.-Index

Einige Worte vorab.-I Analysis.-1 Worum geht es in der Analysis?.-2 Ein wenig Vorbereitung.2.1 Motivation.2.2 Ein Vorrat an Buchstaben.2.3 Vom richtigen Umgang mit der Aussagenlogik.2.4 Vollständige Induktion.2.5 Mengen.2.6 Aufgaben.2.7 Lösungen.-3 Reelle und komplexe Zahlen.3.1 Motivation.3.2 Reelle Zahlen.3.3 Summen und Produkte.3.4 Komplexe Zahlen.3.5 Aufgaben.3.6 Lösungen.-4 Abbildungen und Funktionen.4.1 Motivation und Definitionen.4.2 Einige Eigenschaften von Abbildungen.4.3 Komposition von Abbildungen.4.4 Darstellung von Funktionen.4.5 Aufgaben.4.6 Lösungen.-5 Wichtige Funktionen im Überblick.-5.1 Motivation.5.2 Polynome und rationale Funktionen.5.3 Sinus, Kosinus und Tangens.5.4 Exponentialfunktion und Logarithmus.5.5 Weitere wichtige Funktionen.5.6 Aufgaben.5.7 Lösungen.-6 Folgen.6.1 Motivation.6.2 Grundlagen.6.3 Konvergenz und Divergenz.6.4 Rechenregeln für Folgen.6.5 Das Monotoniekriterium.6.6 Was noch über Folgen gewusst werden sollte.6.7 Das Häufungspunktprinzip und mehr.6.8 Aufgaben.6.9 Lösungen.-7 Reihen.7.1 Motivation.7.2 Grundlegendes zu Reihen.7.3 Eigenschaften von Reihen.7.4 Konvergenzkriterien.7.5 Aufgaben.7.6 Lösungen.-8 Stetigkeit.8.1 Motivation.8.2 Grundlagen zur Stetigkeit.8.3 Zusammensetzung stetiger Funktionen.8.4 Der Zwischenwertsatz.8.5 Supremum, Infimum, Maximum und Minimum.8.6 Maximum und Minimum für stetige Funktionen.8.7 Aufgaben.8.8 Lösungen.-9 Differenziation.9.1 Motivation.9.2 Grundlagen zur Differenziation.9.3 Rechenregeln für Ableitungen.9.4 Der Mittelwertsatz und Folgerungen daraus.9.5 Höhere Ableitungen.9.6 Ausflug: Sinus, Kosinus und Exponentialfunktion.9.7 Die Regel von l’Hospital.9.8 Aufgaben.9.9 Lösungen.-10 Potenzreihen.10.1 Motivation.10.2 Grundlegendes zu Potenzreihen.10.3 Aufgaben.10.4 Lösungen.-11 Taylorpolynome, Taylorreihen und Extremwerte.11.1 Motivation.11.2 Taylorpolynom und Taylorreihe.11.3 Lokale Extrema differenzierbarer Funktionen.11.4 Aufgaben.11.5 Lösungen.-12 Integration.12.1 Motivation.12.2 Grundlagen zur Integration.12.3 Der Hauptsatz.12.4 Wichtige Regeln zur Integration.12.5 Das uneigentliche Integral.12.6 Aufgaben.12.7 Lösungen.-13 Ausblick: Fourierreihen.13.1 Motivation.13.2 Grundlagen zu Fourierreihen.13.3 Komplexe Darstellung der Fourierreihe.-II Lineare Algebra.-14 Worum geht es in der Linearen Algebra?.-15 Vektorräume, lineare Unabhängigkeit.15.1 Motivation.15.2 Vektorräume.15.3 Der Vektorraum der reellen Zahlen.15.4 Der Vektorraum reellwertiger Funktionen auf R.15.5 Linearkombinationen.15.6 Aufgaben.15.7 Lösungen.-16 Lineare Abbildungen und Matrizen.16.1 Motivation.16.2 Grundlagen zu linearen Abbildungen.16.3 Kern und Bild.16.4 Grundlegendes zu Matrizen.16.5 Rechnen mit Matrizen.16.6 Besondere Matrizen.16.7 Aufgaben.16.8 Lösungen.-17 Lineare Gleichungssysteme.17.1 Motivation und elementare Anwendungen.17.2 Grundlagen.17.3 Gauß-Algorithmus.17.4 Die Struktur der Lösungsmenge.17.5 Zum Invertieren von Matrizen.17.6 Aufgaben.17.7 Lösungen.-18 Determinanten.18.1 Motivation.18.2 Definition und Berechnung.18.3 Geometrische Interpretation.18.4 Rechenregeln für die Determinante.18.5 Das Kreuzprodukt.18.6 Aufgaben.18.7 Lösungen.-19 Norm und Skalarprodukt.19.1 Motivation.19.2 Die Norm.19.3 Das Skalarprodukt.19.4 Orthonormalisierung nach Schmidt.19.5 Orthogonale Matrizen.19.6 Aufgaben.19.7 Lösungen.-20 Basiswechsel und darstellende Matrizen.20.1 Motivation.20.2 Koordinatenvektoren.20.3 Darstellung linearer Abbildungen durch Matrizen.20.4 Matrixtransformation bei einem Basiswechsel.20.5 Aufgaben.20.6 Lösungen.-21 Eigenwerte und Eigenvektoren.21.1 Motivation.21.2 Grundlagen.21.3 Berechnung der Eigenwerte.21.4 Berechnung der Eigenvektoren.21.5 Vielfachheiten.21.6 Hauptvektoren.21.7 Diagonalisierbarkeit.21.8 Aufgaben.21.9 Lösungen.-22 Differenzialgleichungen.22.1 Motivation.22.2 Grundlagen.22.3 Umschreiben in ein System am Beispiel.22.4 Einige Fragestellungen und erste Antworten.22.5 Lösen durch Integration.22.6 Standardlösungsansatz I.22.7 Standardlösungsansatz II.22.8 Finden einer partikulären Lösung.22.9 Anfangswertprobleme.22.10 Wronski-Test.22.11 Beispiel für nicht-lineare Differentialgleichungen.22.12Aufgaben.22.13 Lösungen.-III Klausuraufgaben.-23 Analysis.-24 Lineare Algebra.-Vom Umgang mit Prüfungen.-Literatur und Schlussbemerkungen.-Index

Einige Worte vorab.-I Analysis.-1 Worum geht es in der Analysis?.-2 Ein wenig Vorbereitung.2.1 Motivation.2.2 Ein Vorrat an Buchstaben.2.3 Vom richtigen Umgang mit der Aussagenlogik.2.4 Vollständige Induktion.2.5 Mengen.2.6 Aufgaben.2.7 Lösungen.-3 Reelle und komplexe Zahlen.3.1 Motivation.3.2 Reelle Zahlen.3.3 Summen und Produkte.3.4 Komplexe Zahlen.3.5 Aufgaben.3.6 Lösungen.-4 Abbildungen und Funktionen.4.1 Motivation und Definitionen.4.2 Einige Eigenschaften von Abbildungen.4.3 Komposition von Abbildungen.4.4 Darstellung von Funktionen.4.5 Aufgaben.4.6 Lösungen.-5 Wichtige Funktionen im Überblick.-5.1 Motivation.5.2 Polynome und rationale Funktionen.5.3 Sinus, Kosinus und Tangens.5.4 Exponentialfunktion und Logarithmus.5.5 Weitere wichtige Funktionen.5.6 Aufgaben.5.7 Lösungen.-6 Folgen.6.1 Motivation.6.2 Grundlagen.6.3 Konvergenz und Divergenz.6.4 Rechenregeln für Folgen.6.5 Das Monotoniekriterium.6.6 Was noch über Folgen gewusst werden sollte.6.7 Das Häufungspunktprinzip und mehr.6.8 Aufgaben.6.9 Lösungen.-7 Reihen.7.1 Motivation.7.2 Grundlegendes zu Reihen.7.3 Eigenschaften von Reihen.7.4 Konvergenzkriterien.7.5 Aufgaben.7.6 Lösungen.-8 Stetigkeit.8.1 Motivation.8.2 Grundlagen zur Stetigkeit.8.3 Zusammensetzung stetiger Funktionen.8.4 Der Zwischenwertsatz.8.5 Supremum, Infimum, Maximum und Minimum.8.6 Maximum und Minimum für stetige Funktionen.8.7 Aufgaben.8.8 Lösungen.-9 Differenziation.9.1 Motivation.9.2 Grundlagen zur Differenziation.9.3 Rechenregeln für Ableitungen.9.4 Der Mittelwertsatz und Folgerungen daraus.9.5 Höhere Ableitungen.9.6 Ausflug: Sinus, Kosinus und Exponentialfunktion.9.7 Die Regel von l’Hospital.9.8 Aufgaben.9.9 Lösungen.-10 Potenzreihen.10.1 Motivation.10.2 Grundlegendes zu Potenzreihen.10.3 Aufgaben.10.4 Lösungen.-11 Taylorpolynome, Taylorreihen und Extremwerte.11.1 Motivation.11.2 Taylorpolynom und Taylorreihe.11.3 Lokale Extrema differenzierbarer Funktionen.11.4 Aufgaben.11.5 Lösungen.-12 Integration.12.1 Motivation.12.2 Grundlagen zur Integration.12.3 Der Hauptsatz.12.4 Wichtige Regeln zur Integration.12.5 Das uneigentliche Integral.12.6 Aufgaben.12.7 Lösungen.-13 Ausblick: Fourierreihen.13.1 Motivation.13.2 Grundlagen zu Fourierreihen.13.3 Komplexe Darstellung der Fourierreihe.-II Lineare Algebra.-14 Worum geht es in der Linearen Algebra?.-15 Vektorräume, lineare Unabhängigkeit.15.1 Motivation.15.2 Vektorräume.15.3 Der Vektorraum der reellen Zahlen.15.4 Der Vektorraum reellwertiger Funktionen auf R.15.5 Linearkombinationen.15.6 Aufgaben.15.7 Lösungen.-16 Lineare Abbildungen und Matrizen.16.1 Motivation.16.2 Grundlagen zu linearen Abbildungen.16.3 Kern und Bild.16.4 Grundlegendes zu Matrizen.16.5 Rechnen mit Matrizen.16.6 Besondere Matrizen.16.7 Aufgaben.16.8 Lösungen.-17 Lineare Gleichungssysteme.17.1 Motivation und elementare Anwendungen.17.2 Grundlagen.17.3 Gauß-Algorithmus.17.4 Die Struktur der Lösungsmenge.17.5 Zum Invertieren von Matrizen.17.6 Aufgaben.17.7 Lösungen.-18 Determinanten.18.1 Motivation.18.2 Definition und Berechnung.18.3 Geometrische Interpretation.18.4 Rechenregeln für die Determinante.18.5 Das Kreuzprodukt.18.6 Aufgaben.18.7 Lösungen.-19 Norm und Skalarprodukt.19.1 Motivation.19.2 Die Norm.19.3 Das Skalarprodukt.19.4 Orthonormalisierung nach Schmidt.19.5 Orthogonale Matrizen.19.6 Aufgaben.19.7 Lösungen.-20 Basiswechsel und darstellende Matrizen.20.1 Motivation.20.2 Koordinatenvektoren.20.3 Darstellung linearer Abbildungen durch Matrizen.20.4 Matrixtransformation bei einem Basiswechsel.20.5 Aufgaben.20.6 Lösungen.-21 Eigenwerte und Eigenvektoren.21.1 Motivation.21.2 Grundlagen.21.3 Berechnung der Eigenwerte.21.4 Berechnung der Eigenvektoren.21.5 Vielfachheiten.21.6 Hauptvektoren.21.7 Diagonalisierbarkeit.21.8 Aufgaben.21.9 Lösungen.-22 Differenzialgleichungen.22.1 Motivation.22.2 Grundlagen.22.3 Umschreiben in ein System am Beispiel.22.4 Einige Fragestellungen und erste Antworten.22.5 Lösen durch Integration.22.6 Standardlösungsansatz I.22.7 Standardlösungsansatz II.22.8 Finden einer partikulären Lösung.22.9 Anfangswertprobleme.22.10 Wronski-Test.22.11 Beispiel für nicht-lineare Differentialgleichungen.22.12Aufgaben.22.13 Lösungen.-III Klausuraufgaben.-23 Analysis.-24 Lineare Algebra.-Vom Umgang mit Prüfungen.-Literatur und Schlussbemerkungen.-Index

Mike Scherfner forscht vornehmlich in den Bereichen der Geometrie und Mathematischen Physik und befasst sich auch mit deren Anwendungen. Er lehrt Mathematik, Informatik und Aspekte der Künstlichen Intelligenz.

Torsten Volland ist als Mathematiker in der Software-Entwicklung in den Bereichen der Datenverarbeitung und Qualitätsdatenanalyse tätig.

Die Autoren können auf viele Jahre sehr erfolgreicher Lehre blicken, ausgezeichnet u. a. durch herausragende Evaluationsergebnisse.


Zum Anfang des Studiums sind Studierende der Ingenieurwissenschaften hauptsächlich mit Grundlagen beschäftigt, zu denen wesentlich die Mathematik gehört. Hier sind insbesondere die Analysis (in einer Variablen) und Lineare Algebra zu nennen, die zu oft eine große Hürde darstellen.

Mit unserem Buch wollen wir den Weg ebnen, indem wir Sie ausführlich – und ohne Umwege – mit dem genannten Stoff vertraut machen.

In einem verbindlichen, aber dennoch entspannten Stil bringen wir Ihnen die wichtigen Methoden und Begriffe bei.

Besonderheiten:

  • Zahlreiche Bilder und Beispiele.
  • Viele begleitende Aufgaben mit vollständigen Lösungen.
  • Klausuraufgaben mit kompletten Lösungen.
  • Motivation und Verständnisfragen für jedes Kapitel.
  • "Erste-Hilfe-Kurs" für Prüfungen.

Für die 2. Auflage wurden viele Stellen didaktisch verbessert und korrigiert. Durch zusätzliche Erklärungen, Grafiken und das Eingehen auf Leserkommentare ist das Buch nun noch verständlicher und hervorragend als freundlicher Begleiter für Ihr erstes mathematisches Semester geeignet.


Die Autoren

Mike Scherfner forscht vornehmlich in den Bereichen der Geometrie und Mathematischen Physik und befasst sich auch mit deren Anwendungen. Er lehrt Mathematik, Informatik und Aspekte der Künstlichen Intelligenz. 

Torsten Volland ist als Mathematiker in der Software-Entwicklung in den Bereichen der Datenverarbeitung und Qualitätsdatenanalyse tätig.

Die Autoren können auf viele Jahre sehr erfolgreicher Lehre blicken, ausgezeichnet u. a. durch herausragende Evaluationsergebnisse.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia