• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Mathematics of Machine Learning: Master Linear Algebra, Calculus, and Probability for Machine Learning » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Mathematics of Machine Learning: Master Linear Algebra, Calculus, and Probability for Machine Learning

ISBN-13: 9781837027873 / Angielski / Miękka / 2025

Tivadar Danka
 - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Mathematics of Machine Learning: Master Linear Algebra, Calculus, and Probability for Machine Learning

ISBN-13: 9781837027873 / Angielski / Miękka / 2025

Tivadar Danka
cena 258,21 zł
(netto: 245,91 VAT:  5%)

Najniższa cena z 30 dni: 256,80 zł
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Master the math behind machine learning algorithms with this comprehensive guide to linear algebra, calculus, and probability, complete with Python examples Key Features Master linear algebra, calculus, and probability theory for ML Understand mathematical structures behind machine learning algorithms Learn Python implementations of core mathematical concepts Develop skills to optimize, customize, and analyze machine learning solutions Bridge the gap between theory and real-world applications Book DescriptionMathematics of Machine Learning provides a rigorous yet accessible introduction to the mathematical underpinnings of machine learning, designed for engineers, developers, and data scientists ready to elevate their technical expertise. With this book, you’ll explore the core disciplines of linear algebra, calculus, and probability theory, essential for mastering advanced machine learning concepts. The book balances theory and application, offering clear explanations of mathematical constructs and their direct relevance to machine learning tasks. Through practical Python examples, you’ll not only learn the mathematics but also how to implement and use these ideas in real-world scenarios, such as optimizing algorithms or solving specific challenges in neural network training. Whether you aim to deepen your theoretical knowledge or enhance your capacity to solve complex machine learning problems, this book provides the structured guidance you need. By the end of this book, you’ll gain the confidence to engage with advanced machine learning literature and tailor algorithms to meet specific project requirements.What you will learn Core concepts of linear algebra, including matrices, eigenvalues, and decompositions Fundamental principles of calculus, including differentiation and integration Advanced topics in multivariable calculus for optimization in high dimensions Essential probability concepts like distributions, Bayes' theorem, and entropy Python-based implementations to bring mathematical ideas to life The superpower of mathematical and scientific thinking, with applications to data science and machine learning Who this book is forThis book is for aspiring and practicing machine learning engineers, data scientists, and software developers who wish to gain a deeper understanding of the mathematics that drives machine learning. A foundational understanding of Python and a basic familiarity with machine learning tools are recommended.

Master the math behind machine learning algorithms with this comprehensive guide to linear algebra, calculus, and probability, complete with Python examples Key Features Master linear algebra, calculus, and probability theory for ML Understand mathematical structures behind machine learning algorithms Learn Python implementations of core mathematical concepts Develop skills to optimize, customize, and analyze machine learning solutions Bridge the gap between theory and real-world applications Book DescriptionMathematics of Machine Learning provides a rigorous yet accessible introduction to the mathematical underpinnings of machine learning, designed for engineers, developers, and data scientists ready to elevate their technical expertise. With this book, you’ll explore the core disciplines of linear algebra, calculus, and probability theory, essential for mastering advanced machine learning concepts. The book balances theory and application, offering clear explanations of mathematical constructs and their direct relevance to machine learning tasks. Through practical Python examples, you’ll not only learn the mathematics but also how to implement and use these ideas in real-world scenarios, such as optimizing algorithms or solving specific challenges in neural network training. Whether you aim to deepen your theoretical knowledge or enhance your capacity to solve complex machine learning problems, this book provides the structured guidance you need. By the end of this book, you’ll gain the confidence to engage with advanced machine learning literature and tailor algorithms to meet specific project requirements.What you will learn Core concepts of linear algebra, including matrices, eigenvalues, and decompositions Fundamental principles of calculus, including differentiation and integration Advanced topics in multivariable calculus for optimization in high dimensions Essential probability concepts like distributions, Bayes' theorem, and entropy Python-based implementations to bring mathematical ideas to life The superpower of mathematical and scientific thinking, with applications to data science and machine learning Who this book is forThis book is for aspiring and practicing machine learning engineers, data scientists, and software developers who wish to gain a deeper understanding of the mathematics that drives machine learning. A foundational understanding of Python and a basic familiarity with machine learning tools are recommended.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Study & Teaching
Mathematics > Mathematical Analysis
Mathematics > Numerical Analysis
Wydawca:
Packt Publishing Limited
Język:
Angielski
ISBN-13:
9781837027873
Rok wydania:
2025
Wymiary:
23.5x19.1
Oprawa:
Miękka


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia