of Part A.- 1. Lagrangian Mechanics of Particles and Rigid Bodies.- Section 1. Kinematics of Systems of Particles.- Section 2. Kinematics of a Rigid Body.- Section 3. Kinematics of Holonomic Systems of Particles and Rigid Bodies.- Section 4. Dynamical Principles for Particles and Rigid Bodies.- Section 5. Lagrange’s Equations for Constrained Systems.- Section 6. Explicit Forms of Lagrange’s Equations.- 2. Hamiltonian Systems in Phase Space.- Section 7. Hamilton’s Principle.- Section 8. Phase Space and Its Canonical Differential Forms.- Section 9. The Legendre Transformation and the Hamiltonian System I: The Time-Independent Case.- Section 10. The Legendre Transformation and the Hamiltonian System II: The Time-Dependent Case.- Section 11. Contact Transformations and the Hamilton-Jacobi Equation.- Section 12. The Hamilton-Jacobi Theory.- Section 13. Huygens’ Principle for the Hamilton-Jacobi Equation 72 Appendix. Characteristics of a First-Order Partial Differential Equation.- 3. Basic Principles of Continuum Mechanics.- Section 14. Deformations and Motions.- Section 15. Balance Principles.- Section 16. Cauchy’s Postulate and the Stress Principle.- Section 17. Field Equations.- Section 18. Constitutive Equations.- Section 19. Some Representation Theorems.- Section 20. The Energy Principle for Hyperelastic Materials.- Section 21. Internal Constraints.- 4. Some Topics in the Statics and Dynamics of Material Bodies.- Section 22. Homogeneous Simple Material Bodies.- Section 23. Viscometric Flows of Incompressible Simple Fluids.- Section 24. Universal Solutions for Isotropic Elastic Solids I: The Compressible Case.- Section 25. Universal Solutions for Isotropic Elastic Solids II: The Incompressible Case.- Section 26. Materially Uniform Smooth Elastic Bodies.- Section 27. Material Connections.- Section 28. Noll’s Equations of Motion.- Section 29. Inhomogeneous Isotropic Elastic Solid Bodies.- Selected Reading for Part A.