• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Machine Learning in Medicine - Cookbook » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Machine Learning in Medicine - Cookbook

ISBN-13: 9783319041803 / Angielski / Miękka / 2014 / 137 str.

Ton J. Cleophas; Aeilko H. Zwinderman
Machine Learning in Medicine - Cookbook Ton J. Cleophas Aeilko H. Zwinderman 9783319041803 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Machine Learning in Medicine - Cookbook

ISBN-13: 9783319041803 / Angielski / Miękka / 2014 / 137 str.

Ton J. Cleophas; Aeilko H. Zwinderman
cena 201,72
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The amount of data in medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional methods of data analysis have difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing.Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning and the current 100 page cookbook should be helpful to that aim. It covers in a condensed form the subjects reviewed in the 750 page three volume textbook by the same authors, entitled "Machine Learning in Medicine I-III" (ed. by Springer, Heidelberg, Germany, 2013) and was written as a hand-hold presentation and must-read publication. It was written not only to investigators and students in the fields, but also to jaded clinicians new to the methods and lacking time to read the entire textbooks.General purposes and scientific questions of the methods are only briefly mentioned, but full attention is given to the technical details. The two authors, a statistician and current president of the International Association of Biostatistics and a clinician and past-president of the American College of Angiology, provide plenty of step-by-step analyses from their own research and data files for self-assessment are available at extras.springer.com.From their experience the authors demonstrate that machine learning performs sometimes better than traditional statistics does. Machine learning may have little options for adjusting confounding and interaction, but you can add propensity scores and interaction variables to almost any machine learning method.

Kategorie:
Nauka, Biologia i przyroda
Kategorie BISAC:
Science > Life Sciences - General
Medical > Biostatistics
Computers > Data Science - General
Wydawca:
Springer
Seria wydawnicza:
Springerbriefs in Statistics
Język:
Angielski
ISBN-13:
9783319041803
Rok wydania:
2014
Wydanie:
2014
Numer serii:
000450929
Ilość stron:
137
Waga:
2.41 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

From the reviews:

"This is a concise, instructive and practical text on the various models of machine learning with particular reference to their applicability in medicine. ... The book is primarily aimed at students, health professionals and researchers with basic experience in statistics who are looking for a quick review prior to using machine learning tools. ... This book is a valuable resource for those who need a quick reference for machine learning models in medicine." (Kamesh Sivagnanam, Doody's Book Reviews, April, 2014)

Cluster Models

 1        Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients)                                

2            Density-based Clustering to Identify Outlier Groups in Otherwise  

              Homogeneous Data (50 Patients)

3              Two Step Clustering to Identify Subgroups and Predict Subgroup   Memberships in Individual Future Patients (120 Patients)

Linear Models

 4              Linear, Logistic, and Cox Regression for Outcome Prediction with                Unpaired Data (20, 55, and 60 Patients)

5             Generalized Linear Models for Outcome Prediction with Paired

                Data (100 Patients and 139 Physicians)

 6             Generalized Linear Models for Predicting Event-Rates (50 Patients)

                Exact P-Values                                                                                                

 7             Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients)

 8             Optimal Scaling of High-sensitivity Analysis of Health Predictors

                (250 Patients)

 9             Discriminant Analysis for Making a Diagnosis from

                Multiple Outcomes (45 Patients)

 10           Weighted Least Squares for Adjusting Efficacy Data with

                Inconsistent Spread (78 Patients)     

11           Partial Correlations for Removing Interaction Effects from

                Efficacy Data (64 Patients)

 12           Canonical Regression for Overall Statistics of Multivariate                 Data (250 Patients)                 Rules Models 

13           Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients)

  14           Complex Samples Methodologies for Unbiased Sampling

                (9,678 Persons)               

 15           Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients)                 

16           Decision Trees for Decision Analysis (1004 and 953 Patients)

17      Multidimensional Scaling for Visualizing Experienced Drug                 Efficacies (14 Pain-killers and 42 Patients)                

18           Stochastic Processes for Long Term Predictions from Short

                Term Observations

 19           Optimal Binning for Finding High Risk Cut-offs (1445 Families)

 20           Conjoint Analysis for Determining the Most Appreciated

                Properties of Medicines to Be Developed (15 Physicians)

 Index                                                                                                                                 

 

 

 

 

 

 

 

 



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia