• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Machine Learning for Planetary Science » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Machine Learning for Planetary Science

ISBN-13: 9780128187210 / Angielski / Miękka / 2022 / 234 str.

Joern Helbert; Mario D'Amore; Michael Aye
Machine Learning for Planetary Science Joern Helbert Mario D'Amore Michael Aye 9780128187210 Elsevier - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Machine Learning for Planetary Science

ISBN-13: 9780128187210 / Angielski / Miękka / 2022 / 234 str.

Joern Helbert; Mario D'Amore; Michael Aye
cena 646,09
(netto: 615,32 VAT:  5%)

Najniższa cena z 30 dni: 642,11
Termin realizacji zamówienia:
ok. 30 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!
Kategorie:
Inne
Kategorie BISAC:
Science > Space Science - General
Science > Geofizyka
Computers > Data Science - General
Wydawca:
Elsevier
Język:
Angielski
ISBN-13:
9780128187210
Rok wydania:
2022
Ilość stron:
234
Waga:
0.32 kg
Wymiary:
22.86 x 15.24 x 1.24
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

"Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine-learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation." --Lunar and Planetary Institutte

Part I: Introduction to Machine Learning 1. Types of ML methods (supervised, unsupervised, semi-supervised; classification, regression) 2. Dealing with small labeled datasets (semi-supervised learning, active learning) 3. Selecting a methodology and evaluation metrics 4. Interpreting and explaining model behavior 5. Hyperparameter optimization and training neural networks

Part II: Methods of machine learning 6. The new and unique challenges of planetary missions 7. Data acquisition (PDS nodes, etc.) and Data types, projections, processing, units, etc.

Part III: Useful tools for machine learning projects in planetary science 8. The Python Spectral Analysis Tool (PySAT): A Powerful, Flexible, Preprocessing and Machine Learning Library and Interface 9. Getting data from the PDS, pre-processing, and labeling it

Part IV: Case studies 10. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning and/or Data Restoration 11. Surface mapping via unsupervised learning and clustering of Mercury's Visible-Near-Infrared reflectance spectra 12. Mapping Saturn using deep learning 13. Artificial Intelligence for Planetary Data Analytics - Computer Vision to Boost Detection and Analysis of Jupiter's White Ovals in Images Acquired by the Jiram Spectrometer

Joern Helbert has been a staff scientist at the German Aerospace Center since 2003 and is head of the "Planetary spectroscopy group”. He is an expert in planetary remote sensing using infrared techniques. He is involved in several space missions including BepiColombo, MarsExpress, VenusExpress, the NASA MESSENGER mission to Mercury and the JAXA Hayabusa 2 sample return mission. He is Co-Private Investigator of the MERTIS instrument on BepiColombo. Mario D'Amore has been a staff researcher at the Institute of Planetary Research of the German Aerospace Center (PF-DLR) since 2008.. He is an expert in data analysis, GIS spatial analysis and databases for scientific purposes. Currently, he is the Data Archive and Handling Manager for the MERTIS instrument on the BepiColombo mission at the PF-DLR. He was involved in ESA's Mars and Venus Express Mission as CoI, Data Archive Manager and Calibration Manager for the PFS experiment. Before that, he obtained a fellowship as Guest Scientist at PF-DLR focused on the development of remote sensing data interpretation algorithms, using the data acquired in the Planetary Emissivity Laboratory (PEL) at the PF-DLR. Michael Aye is a Research Associate at the Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder. He has been or is currently involved with many missions, including NASA Dawn, Cassini, LRO, MRO, Maven and BepiColombo missions for instrument development, project management, calibration and data analysis. He is Co-Investigator on a NASA Research project and lead analyst on Citizen Science project "Planet Four”. He specializes in cameras, far IR calibration, and image and large data analyses. He is interested in pushing the consolidation of planetary python tools. Hannah Kerner is an assistant research professor at the University of Maryland in College Park, Maryland in the USA. Her research focuses on machine learning applications for planetary science, specifically novelty detection and change detection. She is a science team member for Mars Science Laboratory (MSL) Curiosity and is on the tactical operations team for the Mars Exploration Rover (MER) Opportunity. She has worked at Planet, a remote sensing company based in San Francisco, as well as NASA's Jet Propulsion Laboratory, Goddard Space Flight Center, and Langley Research Center. She earned her B.S. in computer science at the University of North Carolina at Chapel Hill, where she conducted research in robot motion planning.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia