• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2944077]
• Literatura piękna
 [1814251]

  więcej...
• Turystyka
 [70679]
• Informatyka
 [151074]
• Komiksy
 [35590]
• Encyklopedie
 [23169]
• Dziecięca
 [611005]
• Hobby
 [136031]
• AudioBooki
 [1718]
• Literatura faktu
 [225599]
• Muzyka CD
 [379]
• Słowniki
 [2916]
• Inne
 [443741]
• Kalendarze
 [1187]
• Podręczniki
 [166463]
• Poradniki
 [469211]
• Religia
 [506887]
• Czasopisma
 [481]
• Sport
 [61343]
• Sztuka
 [242115]
• CD, DVD, Video
 [3348]
• Technologie
 [219293]
• Zdrowie
 [98602]
• Książkowe Klimaty
 [124]
• Zabawki
 [2385]
• Puzzle, gry
 [3504]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7151]
Kategorie szczegółowe BISAC

Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems

ISBN-13: 9783030703875 / Angielski / Twarda / 2021 / 300 str.

Ryan G. McClarren
Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems Ryan G. McClarren 9783030703875 Springer Nature Switzerland AG - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems

ISBN-13: 9783030703875 / Angielski / Twarda / 2021 / 300 str.

Ryan G. McClarren
cena 322,01
(netto: 306,68 VAT:  5%)

Najniższa cena z 30 dni: 308,41
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!
Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Engineering (General)
Computers > Computer Science
Computers > Artificial Intelligence - General
Wydawca:
Springer Nature Switzerland AG
Język:
Angielski
ISBN-13:
9783030703875
Rok wydania:
2021
Wydanie:
2022
Ilość stron:
300
Waga:
0.54 kg
Wymiary:
23.39 x 15.6 x 1.6
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Part I Fundamentals

1.0  Introduction

1.1.   Where machine learning can help engineers

1.2.   Where machine learning cannot help engineers

1.3.   Machine learning to correct idealized models

2.      The Landscape of machine learning

2.1.   Supervised learning

2.1.1.      Regression

2.1.2.      Classification

2.1.3.      Time series

2.1.4.      Reinforcement

2.2.   Unsupervised Learning

2.3.   Optimization

2.4.   Bayesian statistics

2.5.   Cross-validation

3.      Linear Models

3.1.   Linear regression

3.2.   Logistic regression

3.3.   Regularized regression

3.4.   Case Study: Determining physical laws using regularized regression

4.      Tree-Based Models

4.1.   Decision Trees

4.2.   Random Forests

4.3.   BART

4.4.   Case Study: Modeling an experiment using random forest models

5.      Clustering data

5.1.   Singular value decomposition

5.2.   Case Study: SVD to standardize several time series

5.3.   K-means

5.4.   K-nearest neighbors

5.5.   t-SNE

5.6.   Case Study: The reflectance spectrum of different foliage

Part II Deep Neural Networks

6.      Feed-Forward Neural Networks

6.1.   Neurons

6.2.   Dropout

6.3.   Backpropagation

6.4.   Initialization

6.5.   Regression

6.6.   Classification

6.7.   Case Study: The strength of concrete as a function of age and ingredients

7.      Convolutional Neural Networks

7.1.   Convolutions

7.2.   Pooling

7.3.   Residual networks

7.4.   Case Study: Finding volcanoes on Venus

8.      Recurrent neural networks for time series data

8.1.   Basic Recurrent neural networks

8.2.   Long-term, Short-Term memory

8.3.   Attention networks

8.4.   Case Study: Predicting future system performance

Part III Advanced Topics in Machine Learning

9.      Unsupervised Learning with Neural Networks

9.1.   Auto-encoders

9.2.   Boltzmann machines

9.3.   Case study: Optimization using Inverse models

10.  Reinforcement learning

10.1.                    Case study: controlling a mechanical gantry

11.  Transfer learning

11.1.                    Case study: Transfer learning a simulation emulator for experimental measurements

Part IV Appendices

A.      SciKit-Learn

B.      Tensorflow

Ryan McClarren, Associate Professor of Aerospace and Mechanical Engineering at the University of Notre Dame, has applied machine learning to understand, analyze, and optimize engineering systems throughout his academic career. He has authored numerous publications in refereed journals on machine learning, uncertainty quantification, and numerical methods, as well as two scientific texts: Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers and Computational Nuclear Engineering and Radiological Science Using Python.  A well-known member of the computational engineering community, Dr. McClarren has won research awards from NSF, DOE, and three national labs. Prior to joining Notre Dame in 2017, he was Assistant Professor of Nuclear Engineering at Texas A&M University, and previously a research scientist at Los Alamos National Laboratory in the Computational Physics and Methods group. While an undergraduate at the University of Michigan he won three awards for creative writing. 

All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow,  demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia