Part I. Introduction and Background: 1. When and how to use machine learning; 2. Background. Part II. Fundamental Concepts and Algorithms: 3. Inference, or model-driven prediction; 4. Supervised learning: getting started; 5. Optimization for machine learning; 6. Supervised learning: beyond least squares; 7: Unsupervised learning. Part III. Advanced Tools and Algorithms: 8. Statistical learning theory; 9. Exponential family of distributions; 10. Variational inference and variational expectation maximization; 11. Information-theoretic inference and learning; 12. Bayesian learning. Part IV. Beyond Centralized Single-Task Learning: 13. Transfer learning, multi-task learning, continual learning, and meta-learning; 14. Federated learning. Part V. Epilogue: 15. Beyond this book.