• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Machine Learning and Flow Assurance in Oil and Gas Production » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Machine Learning and Flow Assurance in Oil and Gas Production

ISBN-13: 9783031242304 / Angielski

Bhajan Lal; Jai Krishna Sahith Sayani; Cornelius Bavoh
Machine Learning and Flow Assurance in Oil and Gas Production Bhajan Lal Jai Krishna Sahit Cornelius Bavoh 9783031242304 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Machine Learning and Flow Assurance in Oil and Gas Production

ISBN-13: 9783031242304 / Angielski

Bhajan Lal; Jai Krishna Sahith Sayani; Cornelius Bavoh
cena 645,58
(netto: 614,84 VAT:  5%)

Najniższa cena z 30 dni: 616,85
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

This book is useful to flow assurance engineers, students, and industries who wish to be flow assurance authorities in the twenty-first-century oil and gas industry.The use of digital or artificial intelligence methods in flow assurance has increased recently to achieve fast results without any thorough training effectively. Generally, flow assurance covers all risks associated with maintaining the flow of oil and gas during any stage in the petroleum industry. Flow assurance in the oil and gas industry covers the anticipation, limitation, and/or prevention of hydrates, wax, asphaltenes, scale, and corrosion during operation. Flow assurance challenges mostly lead to stoppage of production or plugs, damage to pipelines or production facilities, economic losses, and in severe cases blowouts and loss of human lives. A combination of several chemical and non-chemical techniques is mostly used to prevent flow assurance issues in the industry. However, the use of models to anticipate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance models on hydrates, wax, asphaltenes, scale, and corrosion management are challenged with accuracy and precision. They are not also limited by several parametric assumptions. Recently, machine learning methods have gained much attention as best practices for predicting flow assurance issues. Examples of these machine learning models include conventional approaches such as artificial neural network, support vector machine (SVM), least square support vector machine (LSSVM), random forest (RF), and hybrid models. The use of machine learning in flow assurance is growing, and thus, relevant knowledge and guidelines on their application methods and effectiveness are needed for academic, industrial, and research purposes.In this book, the authors focus on the use and abilities of various machine learning methods in flow assurance. Initially, basic definitions and use of machine learning in flow assurance are discussed in a broader scope within the oil and gas industry. The rest of the chapters discuss the use of machine learning in various flow assurance areas such as hydrates, wax, asphaltenes, scale, and corrosion. Also, the use of machine learning in practical field applications is discussed to understand the practical use of machine learning in flow assurance.

This book is useful to flow assurance engineers, students, and industries who wish to be flow assurance authorities in the twenty-first-century oil and gas industry.The use of digital or artificial intelligence methods in flow assurance has increased recently to achieve fast results without any thorough training effectively. Generally, flow assurance covers all risks associated with maintaining the flow of oil and gas during any stage in the petroleum industry. Flow assurance in the oil and gas industry covers the anticipation, limitation, and/or prevention of hydrates, wax, asphaltenes, scale, and corrosion during operation. Flow assurance challenges mostly lead to stoppage of production or plugs, damage to pipelines or production facilities, economic losses, and in severe cases blowouts and loss of human lives. A combination of several chemical and non-chemical techniques is mostly used to prevent flow assurance issues in the industry. However, the use of models to anticipate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance models on hydrates, wax, asphaltenes, scale, and corrosion management are challenged with accuracy and precision. They are not also limited by several parametric assumptions. Recently, machine learning methods have gained much attention as best practices for predicting flow assurance issues. Examples of these machine learning models include conventional approaches such as artificial neural network, support vector machine (SVM), least square support vector machine (LSSVM), random forest (RF), and hybrid models. The use of machine learning in flow assurance is growing, and thus, relevant knowledge and guidelines on their application methods and effectiveness are needed for academic, industrial, and research purposes.In this book, the authors focus on the use and abilities of various machine learning methods in flow assurance. Initially, basic definitions and use of machine learning in flow assurance are discussed in a broader scope within the oil and gas industry. The rest of the chapters discuss the use of machine learning in various flow assurance areas such as hydrates, wax, asphaltenes, scale, and corrosion. Also, the use of machine learning in practical field applications is discussed to understand the practical use of machine learning in flow assurance.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Power Resources - Fossil Fuels
Science > Earth Sciences - Geology
Science > Chemistry - Industrial & Technical
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783031242304

Chapter 1 Machine Learning and Flow Assurance Issues

 Abstract

1.1 Introduction

1.2 Flow assurances challenges

1.3 Machine learning vocabulary

References

 

Chapter 2 Machine Learning in Oil and Gas Industry

Abstract

2.1 Introduction

2.2. Machine Learning in Upstream

2.3 Machine Learning advancements in the oil and gas industry

2.4 Challenges

2.5 COVID-19's impact on the oil and gas industry, and AI as a solution Companies

2.6 Summary

References

 

Chapter 3 Multiphase Flow Systems and Potential of Machine Learning Approaches in Cutting Transport and Liquid Loading Scenarios

Abstract

3.1 Introduction to multiphase

3.2 Flow Assurance issues in Drilling Applications (Cutting Transport)

3.3 Introduction of Cutting transport issues

3.4 Evolution of various cutting transport models

3.5 Empirical model

3.6 Transient model

3.7 Machine Learning approaches for cutting transport

3.8 Flow Assurance issues in Liquid Loading Applications

3.9 Case Studies in Multiphase Flow Assurance

3.10 Conclusion

References

 

Chapter 4 Machine Learning in Corrosion

Abstract

4.1 Introduction

4.2 Corrosion In Oil and Gas Industry

4.3 Mitigation Procedures

4.4 Corrosion Prediction Models

4.5 Machine Learning in Corrosion

4.6 Case study

References

 

Chapter 5 Machine Learning in Asphaltenes Mitigation

Abstract

5.1 Introduction

5.2 Asphaltene Precipitation and Deposition in oil and gas industry

5.3 Asphaltene Mitigation Procedures

5.4 Asphaltene Prediction Models

5.5 Machine Learning Application in Asphaltenes Precipitation and Deposition Control

5.6 Conclusion

References

 

Chapter 6 Machine learning for Scale deposition in oil and gas industry

Abstract

6.1 Introduction

6.2 Source of Scaling in Oil and Gas Industry

6.3 Mechanism of Scale Deposition

6.4 Effect of scaling to equipment pipelines

6.5 Scale Inhibition Placement

6.6 Prediction Models Available for Scale Formation Detection

6.7 Machine Learning for Scale Deposition

6.8 Applications of Artificial Intelligence in Oil Desalination Systems

6.9 Case Studies on Scaling Measurement Using Machine Learning

6.10 Conclusion

References

 

Chapter 7 Machine Learning in CO2 sequestration

Abstract

7.1 Introduction

7.2 Conventional CO2 sequestration techniques

7.3 Machine Learning in CO2 sequestration

7.4 Conclusion

References

 

Chapter 8 Machine Learning in Wax Deposition

Abstract

8.1 Introduction

8.2 Wax Deposition Mitigation Techniques

8.3 Prediction’s Models in Wax Deposition

8.4 Machine learning in Wax Deposition

8.5 Wax Deposition Case Studies

8.6 Conclusion

References

 

Chapter 9 Machine Learning Application in Gas Hydrates

Abstract

9.1 Introduction to Gas Hydrates

9.2 Application of Gas Hydrates

9.3 Conventional Gas Hydrate Mitigation Method

9.4 Chemical Inhibition of Gas Hydrates

9.5 Flow Assurance Challenge.

9.6 Machine Learning in Gas Hydrates

9.7 Case Study

9.8 Conclusion

References

 

Chapter 10 Machine Learning Application Guidelines in Flow Assurance

Abstract

10.1 Introduction

10.2 Data

10.3 Representation

10.4 Model

References

 


Dr. Bhajan Lal, chartered chemist, is a senior lecturer (2013-conti..) in Chemical Engineering Department and a core research member of CO2 Research Centre in Institute of Contaminant Management (ICM) at the Universiti Teknologi PETRONAS-Malaysia. After receiving M.Sc., Ph.D. degree (Physical Chemistry) in 2004 from JMI Central University, New Delhi, India, Dr. Lal worked as a postdoc fellow and research scientist in USA, Canada, South Africa, Turkey, and Malaysia (2004-2013). His main areas of research interests are CO2 hydrates and its application in CO2 capture and storage, desalination, and flow assurance. He graduated 6 M.Sc., 5 Ph.D., 2 postdocs, and more than 60 chemical engineering undergrads FYPI students since 2013. Dr. Lal has published 4 books related to oil and gas industry, 120 peer-reviewed journal papers, 50 conference papers, and 4 book chapters (H-index 36, i-10 index 93, no of being cited 3825). In addition, as a project leader, he has secured 18 gas hydrate-related research projects worth RM 3.4 million from oil and gas industries, UTP, and Malaysian Government. He achieved Gold Medal in ITEX2021, EREKA 2022 -Malaysia for his novel gas hydrate-based desalination product exhibition. He delivered customized online/face-to-face short courses in flow assurance, machine learning, and gas hydrate related to oil and gas industry.


Cornelius Borecho Bavoh is a researcher and academician. He worked at the Phase Separation Laboratory of the Research Center for CO2 Capture (RCCO2C) in the Chemical Engineering Department of Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak Darul Ridzuan, Malaysia. He has more than 5 years of experience in tutoring and research at the Universiti Teknologi PETRONAS, Malaysia. He has worked on several industrial and fundamental projects related to drilling, gas hydrate, and CO2 capture and separation, and published more than 30 scientific papers in peer-reviewed journals, conferences, and book chapters. Bavoh holds Ph.D. and M.Sc. degrees in chemical engineering and B.Sc. (Hons) degree in petroleum engineering. His research expertise includes thermodynamics and kinetics of reservoir fluid phase modeling and characterization, gas hydrate in flow assurance, production of naturally deposited methane hydrates, and application of gas hydrate-based technology in CO2 capture and natural gas storage and transportation, drilling fluid technology, rheology, and cuttings transport. Bavoh is a member of the Society of Petroleum Engineers (SPE).


Dr. Jai Krishna Sahith graduated in mechanical engineering department from University Technology PETRONAS, Malaysia, and currently doing postdoc in University College Dublin (UCD). Previously, he completed his masters from Jawaharlal Nehru Technological University Kakinada, India. He filed the IP and patent on gas hydrate-related applications. At present, he is working on gas hydrate-based desalination process. He has published his research work in peer-reviewed journals and book chapters.



This book is useful to flow assurance engineers, students, and industries who wish to be flow assurance authorities in the twenty-first-century oil and gas industry.

The use of digital or artificial intelligence methods in flow assurance has increased recently to achieve fast results without any thorough training effectively. Generally, flow assurance covers all risks associated with maintaining the flow of oil and gas during any stage in the petroleum industry. Flow assurance in the oil and gas industry covers the anticipation, limitation, and/or prevention of hydrates, wax, asphaltenes, scale, and corrosion during operation. Flow assurance challenges mostly lead to stoppage of production or plugs, damage to pipelines or production facilities, economic losses, and in severe cases blowouts and loss of human lives. A combination of several chemical and non-chemical techniques is mostly used to prevent flow assurance issues in the industry. However, the use of models to anticipate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance models on hydrates, wax, asphaltenes, scale, and corrosion management are challenged with accuracy and precision. They are not also limited by several parametric assumptions. Recently, machine learning methods have gained much attention as best practices for predicting flow assurance issues. Examples of these machine learning models include conventional approaches such as artificial neural network, support vector machine (SVM), least square support vector machine (LSSVM), random forest (RF), and hybrid models. The use of machine learning in flow assurance is growing, and thus, relevant knowledge and guidelines on their application methods and effectiveness are needed for academic, industrial, and research purposes.

In this book, the authors focus on the use and abilities of various machine learning methods in flow assurance. Initially, basic definitions and use of machine learning in flow assurance are discussed in a broader scope within the oil and gas industry. The rest of the chapters discuss the use of machine learning in various flow assurance areas such as hydrates, wax, asphaltenes, scale, and corrosion. Also, the use of machine learning in practical field applications is discussed to understand the practical use of machine learning in flow assurance.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia