1. Preface 2. 70 years of machine learning in geoscience in review Jesper Sören Dramsch 3. Machine learning and fault rupture: A review Christopher X. Ren, Claudia Hulbert, Paul A. Johnson and Bertrand Rouet-Leduc 4. Machine learning techniques for fractured media Shriram Srinivasan 5. Seismic signal augmentation to improve generalization of deep neural networks Weiqiang Zhu , S. Mostafa Mousavi and Gregory C. Beroza 6. Deep generator priors for Bayesian seismic inversion Zhilong Fang, Hongjian Fang and L. Demanet 7. An introduction to the two-scale homogenization method for seismology Yann Capdeville, Paul Cupillard and Sneha Singh
Ben Moseley works at the Department of Computer Science at the University of Oxford and is currently researching the use of machine learning for seismic simulation and inversion, as well as machine learning for space science. Previously he was a geophysicist in the hydrocarbon industry, with experience in seismic processing, imaging and exploration
Lion Krischer works at the Department of Earth Sciences at the ETH Zurich in Switzerland. His works sits at the crossroads where seismology meets computational science, Big Data engineering, and machine learning.