• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes

ISBN-13: 9781484265369 / Angielski / Miękka / 2020 / 407 str.

Arjun Panesar
Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes Arjun Panesar 9781484265369 APress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes

ISBN-13: 9781484265369 / Angielski / Miękka / 2020 / 407 str.

Arjun Panesar
cena 211,32 zł
(netto: 201,26 VAT:  5%)

Najniższa cena z 30 dni: 210,17 zł
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Intermediate user level

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Mathematics > Prawdopodobieństwo i statystyka
Computers > Languages - General
Wydawca:
APress
Język:
Angielski
ISBN-13:
9781484265369
Rok wydania:
2020
Ilość stron:
407
Waga:
0.75 kg
Wymiary:
25.4 x 17.78 x 2.26
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Glosariusz/słownik
Wydanie ilustrowane

Chapter 1:  Introduction: Learning for Healthcare  
Chapter Goal: Introduction to book and topics to be covered 
No of pages 10
Sub -Topics
1. What is AI, data science, machine and deep learning
2. The case for learning from data
3. Evolution of big data/learning/Analytics 3.0
4. Practical examples of how data can be used to learn within healthcare settings
5. Conclusion

Chapter 2: Big Data 
Chapter Goal: To understand data required for learning and how to ensure valid data for outcome veracity
No of pages: 35
Sub - Topics
1. What is data, sources of data and what types of data is there? little vs big data and the advantages/disadvantages with such data sets. Structured vs. unstructured data.
2. Massive data - management and complexities
3. The key aspects required of data, in particular, validity to ensure that only useful and relevant information
4. How to use big data for learning (use cases)
5. Turning data into information – how to collect data that can be used to improve health outcomes and examples of how to collect such data
6. Challenges faced as part of the use of big data
7. Data governance

Chapter 3: What is Machine learning?
Chapter Goal: To introduce machine learning, identify/demystify types of learning and provide information of popular algorithms and their applications
No of pages: 45
Sub - Topics:  
1. Introduction – what is learning?
2. Differences/similarities between: what is AI, data science, machine learning, deep learning
3. History/evolution of learning
4. Learning algorithms – popular types/categories, complex examples of machine learning models, applications and their mathematical basis
5. Software(s) used for learning
6. Code samples

Chapter 4: Machine Learning in Healthcare
Chapter Goal: A comprehensive understanding of key concepts related to learning systems and the practical application of machine learning within healthcare settings 
No of pages: 50
Sub - Topics: 
1. Understanding Tasks, Performance and Experience to optimize algorithms and outcomes 
2. Identification of algorithms to be used in healthcare applications for: predictive analysis, perspective analysis, inference, modeling, probability estimation, NLP etc and common uses
3. Real-time analysis and analytics
4. Machine learning best practices
5. Neural networks, ANNs, deep learning
6. Code samples

Chapter 5: Evaluating Learning for Intelligence
Chapter Goal: To understand how to evaluate learning algorithms, how to choose the best evaluation technique/approach for analysis
No of pages: 30
1. How to evaluate machine learning systems 
2. Methodologies for evaluating outputs
3. Improving your intelligence
4. Advanced analytics
5. Real-world examples of evaluations

Chapter 6: Ethics of intelligence
Chapter Goal: To understand the hurdles that must be addressed in AI/machine learning and also overcome on both a micro- and macro-level to enable enhanced health intelligence 
No of pages: 25
1. The benefits of big data and machine learning
2. The disadvantages of big data and machine learning – who owns the data, distributing the data, should patients/people be told what the results are (e.g. data demonstrates risk of cancer)
3. Data for good, or data for bad?
4. Topics that require addressing in order to ensure ease, efficiency and safety of outputs
5. Do we need to govern our intelligence?
6. Example: COVID-19 response and data/privacy sharing

Chapter 7: The Future of Healthcare
Chapter Goal: Outline the direction of AI and machine/deep learning within healthcare and the future applications of intelligent systems
No of pages: 30
1. Evidence-based medicine
2. Patient data as the evidence base
3. Healthcare disruption fueling innovation
4. How generalisations on precise audiences enables personalized medicine
5. Impact of data and IoT on realizing personalized medicine
6. AI ethics
7. Conclusion

Chapter 8: Case studies
Chapter Goal: Real world applications of AI and machine/deep learning in healthcare
No of pages: 50
1. Real world case studies of organizations implementing machine learning and the challenges, methodologies, algorithms and analytics used to determine optimal performance/outcomes 
2. COVID-related case studies: how data was used, how rapid interventions were deployed, agile development methodolodies



Arjun Panesar is the founder of Diabetes Digital Media (DDM), the world’s largest diabetes community and provider of evidence-based digital health interventions. He holds an honors degree (MEng) in computing and artificial intelligence from Imperial College, London. He has a decade of experience in big data and affecting user outcomes, and leads the development of intelligent, evidence-based digital health interventions that harness the power of big data and machine learning to provide precision patient care to patients, health agencies, and governments worldwide.

Arjun’s work has received international recognition and was featured by the BBC, Forbes, New Scientist, and The Times. He has received innovation, business, and technology awards, including being named the top app for prevention of type 2 diabetes.

Arjun is an advisor to the Information School, at the University of Sheffield, Fellow to the NHS Innovation Accelerator, and was recognized by Imperial College as an Emerging Leader in 2020 for his contribution and impact to society.


This updated second edition offers a guided tour of machine learning algorithms and architecture design. It provides real-world applications of intelligent systems in healthcare and covers the challenges of managing big data.

The book has been updated with the latest research in massive data, machine learning, and AI ethics. It covers new topics in managing the complexities of massive data, and provides examples of complex machine learning models. Updated case studies from global healthcare providers showcase the use of big data and AI in the fight against chronic and novel diseases, including COVID-19. The ethical implications of digital healthcare, analytics, and the future of AI in population health management are explored. You will learn how to create a machine learning model, evaluate its performance, and operationalize its outcomes within your organization. Case studies from leading healthcare providers cover scaling global digital services. Techniques are presented to evaluate the efficacy, suitability, and efficiency of AI machine learning applications through case studies and best practice, including the Internet of Things.

You will understand how machine learning can be used to develop health intelligence–with the aim of improving patient health, population health, and facilitating significant care-payer cost savings.

You will:

  • Understand key machine learning algorithms and their use and implementation within healthcare
  • Implement machine learning systems, such as speech recognition and enhanced deep learning/AI
  • Manage the complexities of massive data
  • Be familiar with AI and healthcare best practices, feedback loops, and intelligent agents




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia