• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Machine Learning : A Bayesian and Optimization Perspective » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2948695]
• Literatura piękna
 [1824038]

  więcej...
• Turystyka
 [70868]
• Informatyka
 [151073]
• Komiksy
 [35227]
• Encyklopedie
 [23181]
• Dziecięca
 [621575]
• Hobby
 [138961]
• AudioBooki
 [1642]
• Literatura faktu
 [228651]
• Muzyka CD
 [371]
• Słowniki
 [2933]
• Inne
 [445341]
• Kalendarze
 [1243]
• Podręczniki
 [164416]
• Poradniki
 [479493]
• Religia
 [510449]
• Czasopisma
 [502]
• Sport
 [61384]
• Sztuka
 [243086]
• CD, DVD, Video
 [3417]
• Technologie
 [219673]
• Zdrowie
 [100865]
• Książkowe Klimaty
 [124]
• Zabawki
 [2168]
• Puzzle, gry
 [3372]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7838]
Kategorie szczegółowe BISAC

Machine Learning : A Bayesian and Optimization Perspective

ISBN-13: 9780128015223 / Angielski / Twarda / 2015 / 1062 str.

Theodoridis, Sergios
Machine Learning : A Bayesian and Optimization Perspective Theodoridis, Sergios   9780128015223 Elsevier Science - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Machine Learning : A Bayesian and Optimization Perspective

ISBN-13: 9780128015223 / Angielski / Twarda / 2015 / 1062 str.

Theodoridis, Sergios
cena 489,73
(netto: 466,41 VAT:  5%)

Najniższa cena z 30 dni: 486,69
Termin realizacji zamówienia:
ok. 10-14 dni roboczych.

Darmowa dostawa!

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques - together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.

  • All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods.
  • The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling.
  • Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied.
  • MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Kategorie:
Technologie
Kategorie BISAC:
Computers > General
Technology & Engineering > Signals & Signal Processing
Computers > Artificial Intelligence - General
Wydawca:
Elsevier Science
Język:
Angielski
ISBN-13:
9780128015223
Rok wydania:
2015
Ilość stron:
1062
Waga:
2.32 kg
Wymiary:
23.62 x 19.3 x 5.08
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

"Overall, this text is well organized and full of details suitable for advanced graduate and postgraduate courses, as well as scholars." --Computing Reviews

"Machine Learning: A Bayesian and Optimization Perspective, Academic Press, 2105, by Sergios Theodoridis is a wonderful book, up to date and rich in detail. It covers a broad selection of topics ranging from classical regression and classification techniques to more recent ones including sparse modeling, convex optimization, Bayesian learning, graphical models and neural networks, giving it a very modern feel and making it highly relevant in the deep learning era. While other widely used machine learning textbooks tend to sacrifice clarity for elegance, Professor Theodoridis provides you with enough detail and insights to understand the "fine print". This makes the book indispensable for the active machine learner." --Prof. Lars Kai Hansen, DTU Compute - Dept. Applied Mathematics and Computer Science Technical University of Denmark

"Before the publication of Machine Learning: A Bayesian and Optimization Perspective, I had the opportunity to review one of the chapters in the book (on Monte Carlo methods). I have published actively in this area, and so I was curious how S. Theodoridis would write about it. I was utterly impressed. The chapter presented the material with an optimal mix of theoretical and practical contents in very clear manner and with information for a wide range of readers, from newcomers to more advanced readers. This raised my curiosity to read the rest of the book once it was published. I did it and my original impressions were further reinforced. S. Theodoridis has a great capability to disentangle the important from the unimportant and to make the most of the used space for writing. His text is rich with insights about the addressed topics that are not only helpful for novices but also for seasoned researchers. It goes without saying that my department adopted his book as a textbook in the course on machine learning." --Petar M. Djuric, Ph.D. SUNY Distinguished Professor Department of Electrical and Computer Engineering Stony Brook University, Stony Brook, USA

"As someone who has taught graduate courses in pattern recognition for over 35 years, I have always looked for a rigorous book that is current and appealing to students with widely varying backgrounds. The book on Machine Learning by Sergios Theodoridis has struck the perfect balance in explaining the key (traditional and new) concepts in machine learning in a way that can be appreciated by undergraduate and graduate students as well as practicing engineers and scientists. The chapters have been written in a self-consistent way, which will help instructors to assemble different sections of the book to suit the background of students" --Rama Cellappa, Distinguished University Professor, Minta Martin Professor of Engineering, Chair, Department of Electrical and Computer Engineering, University of Maryland, USA

1. Introduction2. Probability and Stochastic Processes3. Learning in Parametric Modeling: Basic Concepts and Directions4: Mean-Square Error Linear Estimation5. Stochastic Gradient Descent: The LMS Algorithm and Its Family6. The Least-Squares Family7. Classification: A Tour of the Classics8. Parameter Learning: A Convex Analytic Path9. Sparsity-Aware Learning: Concepts and Theoretical Foundations10. Sparsity-Aware Learning: Algorithms and Applications11. Learning in Reproducing Kernel Hilbert Spaces12. Bayesian Learning: Inference and the EM Algorithm13. Bayesian Learning: Approximate Inference and Nonparametric Models14. Monte Carlo Methods15. Probabilistic Graphical Models: Part 116. Probabilistic Graphical Models: Part 217. Particle Filtering18. Neural Networks and Deep Learning19. Dimensionality Reduction and Latent Variables Modeling



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia