Part I Overview of environmental remediation and stabilization/solidification 1. Sustainable waste management 2. Overview of low-carbon stabilization/solidification
Part II Low-carbon stabilization/solidification (S/S) of contaminated soil and sediment 3. Green cementitious materials for S/S 4. Natural or organophilic clay for S/S 5. Nanomaterials for S/S 6. Biochar for S/S 7. S/S of contaminated river/lake sediment 8. S/S of contaminated marine sediment
Part III Low-carbon stabilization/solidification of industrial waste 9. S/S of waste incineration fly ash and bottom ash 10. S/S of waste incineration bottom ash 11. S/S of industrial sludge (electroplating) 12. S/S of industrial sludge (mining) 13. S/S of sewage sludge ash 14. Remediation of mine waste 15. Remediation of tailing waste 16. Remediation of chemical waste 17. Utilization of waste slag 18. Utilization of coal fly ash and bottom ash 19. Utilization of contaminated bio-waste
Part IV Low-carbon stabilization/solidification of radioactive waste 20. Cement-based S/S of radioactive waste 21. Glass-based S/S of radioactive waste 22. Ceramic-based S/S of radioactive waste 23. Chemical enhanced S/S of radioactive waste
Part V Future prospects 24. Novel materials for S/S technologies 25. Advanced characterization for S/S technologies 26. New lab-scale analytical methods for S/S technologies 27. Life cycle analysis of S/S technologies 28. Cost-benefit analysis of S/S technologies 29. Sustainable waste management and circular economy 30. Future research directions for sustainable remediation