• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Long-Range Dependence and Sea Level Forecasting » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Long-Range Dependence and Sea Level Forecasting

ISBN-13: 9783319015040 / Angielski / Miękka / 2013 / 51 str.

Ali Ercan; M. Levent Kavvas; Rovshan K. Abbasov
Long-Range Dependence and Sea Level Forecasting Ali Ercan M. Levent Kavvas Rovshan K. Abbasov 9783319015040 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Long-Range Dependence and Sea Level Forecasting

ISBN-13: 9783319015040 / Angielski / Miękka / 2013 / 51 str.

Ali Ercan; M. Levent Kavvas; Rovshan K. Abbasov
cena 201,72 zł
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution. There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia's Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period.This book will be useful for engineers and researchers working in the areas of applied statistics, climate change, sea level change, time series analysis, applied earth sciences, and nonlinear dynamics.

Kategorie:
Nauka, Biologia i przyroda
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Science > Environmental Science (see also Chemistry - Environmental)
Science > Fizyka matematyczna
Wydawca:
Springer
Seria wydawnicza:
Springerbriefs in Statistics
Język:
Angielski
ISBN-13:
9783319015040
Rok wydania:
2013
Wydanie:
2013
Numer serii:
000450929
Ilość stron:
51
Waga:
0.11 kg
Wymiary:
22.61 x 14.99 x 0.76
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

​1. Introduction.- 2. Long-Range Dependence and ARFIMA Models.- 3. Forecasting, Confidence Band Estimation and Updating.- 4.Case Study I: Caspian Sea Level.- 5.Case Study II: Sea Level Change at Peninsular Malaysia and Sabah-Sarawak.- 6. Summary and Conclusions.- 7. References

Dr. Ali Ercan is a postdoctoral researcher at the University of California, Davis, Department of Civil and Environmental Engineering and co-manager of UC Davis J. Amorocho Hydraulics Laboratory since 2009. Dr. Ercan specializes in the areas of experimental and environmental hydraulics, sediment transport and water quality modelling, computational fluid dynamics, stochastic processes, and time series analysis.

Dr. Rovshan K. Abbasov is an Associate Professor at Khazar University and a laboratory head of the Hydrometeorology Institute of the Ministry of Environment and Natural Resources, Azerbaijan. He has long experience in research and consulting. His research interests are mainly focused on Integrated Water Resources Management, Watershed Hydrology, Flood Management, Disaster Risk Reduction and Eco-hydrology. Prof. M. Levent Kavvas is an endowed chair professor at the University of California, Davis, Department of Civil and Environmental Engineering, working in the areas of hydrology, hydraulics and hydro-climatology.

Prof. Kavvas has been the director of UC Davis J. Amorocho Hydraulics Laboratory since 1993. Prof. Kavvas is currently a member of the UNESCO Expert Group on Climate Change, member of Asia-Pacific Water Forum Steering Group on Climate Change and Water, consultant to Asian Development Bank on climate-change-related modeling studies, chair of American Society of Civil Engineers Hydro-climate committee, and member of the Climate Change Technical Advisory Group for California Department of Water Resources.

​This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution.

There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia’s Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period.

This book will be useful for engineers and researchers working in the areas of applied statistics, climate change, sea level change, time series analysis, applied earth sciences, and nonlinear dynamics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia