• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Linear Algebra with Mathematic » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Linear Algebra with Mathematic

ISBN-13: 9780470637951 / Angielski / Twarda / 2011 / 624 str.

Kenneth Shiskowski; Karl Frinkle
Linear Algebra with Mathematic Shiskowski, Kenneth M. 9780470637951 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Linear Algebra with Mathematic

ISBN-13: 9780470637951 / Angielski / Twarda / 2011 / 624 str.

Kenneth Shiskowski; Karl Frinkle
cena 608,25
(netto: 579,29 VAT:  5%)

Najniższa cena z 30 dni: 604,51
Termin realizacji zamówienia:
ok. 30 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica(R) Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica(R) are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Algebra - Liniowa
Wydawca:
John Wiley & Sons
Seria wydawnicza:
Pure and Applied Mathematics: A Wiley Series of Texts, Monog
Język:
Angielski
ISBN-13:
9780470637951
Rok wydania:
2011
Numer serii:
000417928
Ilość stron:
624
Waga:
1.05 kg
Wymiary:
23.67 x 16.38 x 3.56
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

"An accessible introduction to the theoretical and computational aspects of linear algebra using Maple(TM)." (TMCnet.com, 16 April 2011)

Preface.

Conventions and Notations.

1. An Introduction to Mathematica.

1.1 The Very Basics.

1.2 Basic Arithmetic.

1.3 Lists and Matrices.

1.4 Expressions Versus Functions.

1.5 Plotting and Animations.

1.6 Solving Systems of Equations.

1.7 Basic Programming.

2. Linear Systems of Equations and Matrices.

2.1 Linear Systems of Equations.

2.2 Augmented Matrix of a Linear System and Row Operations.

2.3 Some Matrix Arithmetic.

3. Gauss–Jordan Elimination and Reduced Row Echelon Form.

3.1 Gauss–Jordan Elimination and rref.

3.2 Elementary Matrices.

3.3 Sensitivity of Solutions to Error in the Linear System.

4. Applications of Linear Systems and Matrices.

4.1 Applications of Linear Systems to Geometry.

4.2 Applications of Linear Systems to Curve Fitting.

4.3 Applications of Linear Systems to Economics.

4.4 Applications of Matrix Multiplication to Geometry.

4.5 An Application of Matrix Multiplication to Economics.

5. Determinants, Inverses, and Cramer Rule.

5.1 Determinants and Inverses from the Adjoint Formula.

5.2 Determinants by Expanding Along Any Row or Column.

5.3 Determinants Found by Triangularizing Matrices.

5.4 LU Factorization.

5.5 Inverses from rref.

5.6 Cramer s Rule.

6. Basic Linear Algebra Topics.

6.1 Vectors.

6.2 Dot Product.

6.3 Cross Product.

6.4 A Vector Projection.

7. A Few Advanced Linear Algebra Topics.

7.1 Rotations in Space.

7.2 Rolling a Circle Along a Curve.

7.3 The TNB Frame.

8. Independence, Basis, and Dimension for Subspaces of Rn.

8.1 Subspaces of Rn.

8.2 Independent and Dependent Sets of Vectors in Rn.

8.3 Basis and Dimension for Subspaces of Rn.

8.4 Vector Projection onto a subspace of Rn.

8.5 The Gram–Schmidt Orthonormalization Process.

9. Linear Maps from Rn to Rm.

9.1 Basics About Linear Maps.

9.2 The Kernel and Image Subspaces of a Linear Map.

9.3 Composites of Two Linear Maps and Inverses.

9.4 Change of Bases for the Matrix Representation of a Linear Map.

10. The Geometry of Linear and Affine Maps.

10.1 The Effect of a Linear Map on Area and Arclength in Two Dimensions.

10.2 The Decomposition of Linear Maps into Rotations, Reflections, and Rescalings in R2.

10.3 The Effect of Linear Maps on Volume, Area, and Arclength in R3.

  10.4 Rotations, Reflections, and Rescalings in Three Dimensions.

10.5 Affine Maps.

11. Least–Squares Fits and Pseudoinverses.

11.1 Pseudoinverse to a Nonsquare Matrix and Almost Solving an Overdetermined Linear System.

11.2 Fits and Pseudoinverses.

11.3 Least–Squares Fits and Pseudoinverses.

12. Eigenvalues and Eigenvectors.

12.1 What Are Eigenvalues and Eigenvectors, and Why Do We Need Them?

12.2 Summary of Definitions and Methods for Computing Eigenvalues and Eigenvectors as well as the Exponential of a Matrix.

12.3 Applications of the Diagonalizability of Square Matrices.

12.4 Solving a Square First–Order Linear System if Differential Equations.

12.5 Basic Facts About Eigenvalues, Eigenvectors, and Diagonalizability.

12.6 The Geometry of the Ellipse Using Eigenvalues and Eigenvectors.

12.7 A Mathematica EigenFunction.

Suggested Reading.

Indices.

Keyword Index.

Index of Mathematica Commands. 

Kenneth Shiskowski, PhD, is Professor of Mathematics at Eastern Michigan University. His areas of research interest include numerical analysis, history of mathematics, the integration of technology into mathematics, differential geometry, and dynamical systems. Dr. Shiskowski is the coauthor of Principles of Linear Algebra with Maple, published by Wiley.

Karl Frinkle, PhD, is Associate Professor of Mathematics at Southeastern Oklahoma State University. His areas of research include Bose–Einstein condensates, nonlinear optics, dynamical systems, and integrating technology into mathematics. Dr. Frinkle is the coauthor of Principles of Linear Algebra with Maple, published by Wiley.

A hands–on introduction to the theoretical and computational aspects of linear algebra using Mathematica®

Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided.

The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer′s rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, ′rolling′ a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses.

Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources.

Extensively class–tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia