• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Lectures on the Geometry of Poisson Manifolds » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Lectures on the Geometry of Poisson Manifolds

ISBN-13: 9783034896498 / Angielski / Miękka / 2012 / 206 str.

Izu Vaisman
Lectures on the Geometry of Poisson Manifolds Izu Vaisman 9783034896498 Birkhauser - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Lectures on the Geometry of Poisson Manifolds

ISBN-13: 9783034896498 / Angielski / Miękka / 2012 / 206 str.

Izu Vaisman
cena 200,77
(netto: 191,21 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g (8f8g 8 8 ) (0.1) {f, g} = L... ji - ji; =1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in- gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., TIl]). But, the study of some mechanical sys- tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein We3] that, in fact, the theory can be traced back to S. Lie himself Lie].

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometry - Differential
Science > Fizyka matematyczna
Mathematics > Topologia
Wydawca:
Birkhauser
Seria wydawnicza:
Progress in Mathematics
Język:
Angielski
ISBN-13:
9783034896498
Rok wydania:
2012
Wydanie:
Softcover Repri
Numer serii:
000019240
Ilość stron:
206
Waga:
0.34 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

    "The book serves well as an introduction and an overview of the subject and a long list of references helps with further study."   
  -- Zbl. Math.   

    "The book is well done...should be an essential purchase for mathematics libraries and is likely to be a standard reference for years to come, providing an introduction to an attractive area of further research."  --   Mathematical Reviews   

    "The importance and actuality of the subject, as well as the very rigorous and didactic presentation of the content, make out of this book a valuable contribution to current mathematics. The book is intended first of all to mathematicians, but it can be interesting also for a wide circle of readers, including mechanicists and physicists."    -- Mathematica   

0 Introduction.- 1 The Poisson bivector and the Schouten-Nijenhuis bracket.- 1.1 The Poisson bivector.- 1.2 The Schouten-Nijenhuis bracket.- 1.3 Coordinate expressions.- 1.4 The Koszul formula and applications.- 1.5 Miscellanea.- 2 The symplectic foliation of a Poisson manifold.- 2.1 General distributions and foliations.- 2.2 Involutivity and integrability.- 2.3 The case of Poisson manifolds.- 3 Examples of Poisson manifolds.- 3.1 Structures on ?n. Lie-Poisson structures.- 3.2 Dirac brackets.- 3.3 Further examples.- 4 Poisson calculus.- 4.1 The bracket of 1-forms.- 4.2 The contravariant exterior differentiations.- 4.3 The regular case.- 4.4 Cofoliations.- 4.5 Contravariant derivatives on vector bundles.- 4.6 More brackets.- 5 Poisson cohomology.- 5.1 Definition and general properties.- 5.2 Straightforward and inductive computations.- 5.3 The spectral sequence of Poisson cohomology.- 5.4 Poisson homology.- 6 An introduction to quantization.- 6.1 Prequantization.- 6.2 Quantization.- 6.3 Prequantization representations.- 6.4 Deformation quantization.- 7 Poisson morphisms, coinduced structures, reduction.- 7.1 Properties of Poisson mappings.- 7.2 Reduction of Poisson structures.- 7.3 Group actions and momenta.- 7.4 Group actions and reduction.- 8 Symplectic realizations of Poisson manifolds.- 8.1 Local symplectic realizations.- 8.2 Dual pairs of Poisson manifolds.- 8.3 Isotropic realizations.- 8.4 Isotropic realizations and nets.- 9 Realizations of Poisson manifolds by symplectic groupoids.- 9.1 Realizations of Lie-Poisson structures.- 9.2 The Lie groupoid and symplectic structures of T*G.- 9.3 General symplectic groupoids.- 9.4 Lie algebroids and the integrability of Poisson manifolds.- 9.5 Further integrability results.- 10 Poisson-Lie groups.- 10.1 Poisson-Lie and biinvariant structures on Lie groups.- 10.2 Characteristic properties of Poisson-Lie groups.- 10.3 The Lie algebra of a Poisson-Lie group.- 10.4 The Yang-Baxter equations.- 10.5 Manin triples.- 10.6 Actions and dressing transformations.- References.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia