ISBN-13: 9780387900940 / Angielski / Miękka / 1974 / 148 str.
ISBN-13: 9780387900940 / Angielski / Miękka / 1974 / 148 str.
IN 1959 I lectured on Boolean algebras at the University of Chicago. A mimeographed version of the notes on which the lectures were based circulated for about two years; this volume contains those notes, corrected and revised. Most of the corrections were suggested by Peter Crawley. To judge by his detailed and precise suggestions, he must have read every word, checked every reference, and weighed every argument, and I am lIery grateful to hirn for his help. This is not to say that he is to be held responsible for the imperfec- tions that remain, and, in particular, I alone am responsible for all expressions of personal opinion and irreverent view- point. P. R. H. Ann Arbor, Michigan ] anuary, 1963 Contents Section Page 1 1 Boolean rings ............................ . 2 Boolean algebras ......................... . 3 9 3 Fields of sets ............................ . 4 Regular open sets . . . . . . . . . . . . . . . . . . . 12 . . . . . . 5 Elementary relations. . . . . . . . . . . . . . . . . . 17 . . . . . 6 Order. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . 7 Infinite operations. . .. . . . . . . . . . . . . . . . . 25 . . . . . 8 Subalgebras . . . . . . . . . . . . . . . . . . . . .. . . . 31 . . . . . . 9 Homomorphisms . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . 10 Free algebras . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . 11 Ideals and filters. . . . . . . . . . . . . . . . . . . . 47 . . . . . . 12 The homomorphism theorem. . . . . . . . . . . . .. . . 52 . . 13 Boolean a-algebras . . . . . . . . . . . . . . . . . . 55 . . . . . . 14 The countable chain condition . . . . . . . . . . . . 61 . . . 15 Measure algebras . . . . . . . . . . . . . . . . . . . 64 . . . . . . . 16 Atoms.. . . . .. . . . . .. .. . . . ... . . . . .. . . ... . . .. 69 17 Boolean spaces . . . . . . . . . . . . . . . . . . . . 72 . . . . . . . 18 The representation theorem. . . . . . . . . . . . . . 77 . . . 19 Duali ty for ideals . . . . . . . . . . . . . . . . . .. . . 81 . . . . . 20 Duality for homomorphisms . . . . . . . . . . . . . . 84 . . . . 21 Completion . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . . . . 22 Boolean a-spaces . . . . . . . . . . . . . . . . . .. . . 97 . . . . . 23 The representation of a-algebras . . . . . . . . .. . . 100 . 24 Boolean measure spaces . . . . . . . . . . . . . .. . . 104 . . . 25 Incomplete algebras . . . . . . . . . . . . . . . .. . . 109 . . . . . 26 Products of algebras . . . . . . . . . . . . . . . .. . . 115 . . . . 27 Sums of algebras . . . . . . . . . . . . . . . . . .. . . 119 . . . . . 28 Isomorphisms of factors . . . . . . . . . . . . . .. . . 122 . . .