ISBN-13: 9783528063320 / Niemiecki / Miękka / 1990 / 323 str.
Der allgemeine Begriff der m-dimensionalen isotropen Mannigfaltigkeit Vm eines kom plexen euklidischen Rn wurde von J. LENSE gepragt und fiihrte zu einer Reihe aufier ordentlich interessanter Untersuchungen (vgl. 92J - 104]). Spater hat M. PINL (vgl. 138J - 160]) diese Thematik unter Aspekten der Riemannschen Geometrie konsequent weiterentwickelt. 1st x = x( Ul, U2, . ., u ) eine m-dimensionale Riemannsche Mannig m faltigkeit Vm, die in einem komplexen eukHdischen Rn(Xl;.. ., xn) eingebettet ist und bezeichnet 8x (0. 1) 8u{3 ihren Mafitensor, so heifit Vm isotrop vom Rang r, wenn Rang (gcx{3) = r m gerne Vm als (m-r)-fach isotrop bezeich net. Speziell fiir r = 0, d. h. g"'{3 == 0 liegen sogenannnte vollisotrope Mannigfaltigkeiten vor, denn fiir das allgemeine Bogenelementquadrat (0. 2) 2 gilt hier ds == o. Diese vollisotropen Mannigfaltigkeiten wurden nicht nur von J. LENSE und M. PINL sondern auch von E. BOMPIANI (vgl. 13J - 17]) studiert. Allgemeine Einbettungsprobleme isotroper Mannigfaltigkeiten in regulare Riemannsche Raume hat vor allem W. O. VOGEL behandelt (vgl. 250J - 254]). Eine zusammen fassende Darstellung iiber den bisher angesprochenen Themenkomplex wird unabhangig von diesem Buch in Form einer Monographie von W. O. VOGEL publiziert werden.