1: Atoms and Nuclei: Their Physics and Origins 1.1 Introduction 1.2 Physics of the nucleus 1.3 Radioactive Decay 1.4 Nucleosynthesis2: Decay Systems and Geochronology I 2.1 Basics of Radioactive Isotope Geochemistry 2.2 Fundamentals of Geochronology 2.3 The K-Ar-Ca system 2.4 The Rb-Sr System 2.5 Rare Earth Decay Systems 2.6 The Re-Os-Pt System3: Decay Systems and Geochronology II: U and Th 3.1 Introduction 3.2 Pb-Pb Ages and Isochrons 3.3 Zircon Dating 3.4 U-Decay Series Dating4: Geochronology III: Other Dating Methods 4.1 Introduction 4.2 Cosmogenic Nuclides 4.3 Thermochronology5: Fractionation of isotopes 5.1 Introduction 5.2 Notation, definitions, and standards 5.3 Theory of Equilibrium isotopic fractionations 5.4 Kinetic fractionation 5.5 Mass dependent versus mass dependent fractionation6: Isotope Cosmochemistry 6.1 Introduction 6.2 Star Birth 6.3 Meteorites 6.4 Cosmochronology 6.5 Stardust 6.6 Isotopic variations in bulk meteorites 6.7 Cosmic ray exposure ages of meteorites7: Isotope Geochemistry of the Mantle 7.1 Introduction 7.2 Composition of the Earth's Mantle 7.3 Radiogenic isotopes in oceanic basalts 7.4 Inferences on mantle structure and evolution 7.5 The Subcontinental Lithosphere 7.6 U-Series Isotopes and Melt Generation8: Isotope geochemistry of the continental crust 8.1 Introduction 8.2 Mechanisms of crustal growth 8.3 The earliest continental crust 8.4 The continental crust through time 8.5 Isotopic composition of the continental crust 8.6 Subduction Zones9: Stable Isotopes in the solid Earth 9.1 Introduction 9.2 Equilibrium Fractionations Among Minerals 9.3 Geothermometry 9.4 Stable Isotope Composition of the Mantle 9.5 Oxygen Isotopes in Hydrothermal Systems 9.6 Sulfur Isotopes in magmatic and hydrothermal systems 9.7 Copper isotopes in ore deposits10: Light Stable Isotopes in the exogene 10.1 Introduction 10.2 The hydrologic system 10.3 isotope ratios in the biosphere 10.4 isotope ratios in the atmosphere11: Non-traditional stable and radiogenic isotopes in the exogene 11.1 Introduction 11.2 Radiogenic isotopes in the modern ocean 11.3 Stable isotope ratios of conservative elements 11.4 Stable isotope ratios of nutrient elements 11.5 Stable isotope ratios of transition metals12: Paleoclimate, paleoceanography, and atmospheric history 12.1 Introduction 12.2 The Pleistocene Climate Record in Deep Sea Sediments 12.3 Isotopes in paleoceanography 12.4 Climate in the Cenozoic 12.5 Carbon isotopes, atmospheric carbon dioxide, and climate 12.6 Tracing the evolution of atmospheric oxygen13: Life, Paleoecology, and Human History 13.1 Introduction 13.2 Isotopes in evolution 13.3 Isotopes and diet: you are what you eat 13.4 Paleoecology of grasslands 13.5 Paleoecology of the Pleistocene Tundra Steppe 13.6.1 Domestication of maize 13.7 The metallurgical revolution14: Noble Gas Isotope Geochemistry 14.1 Introduction 14.1.1 Noble Gas Chemistry 14.2 Noble Gases in the Solar System 14.3 Helium 14.4 Neon 14.5 Argon 14.6 Krypton 14.7 Xenon 14.8 Implications of Noble Gas Isotope Ratios for the Origin and Evolution of the Earth 14.9 Noble gas constraints on formation and evolution of the Earth
William M. White is Professor Emeritus of Earth and Atmospheric Sciences at Cornell University. He received his B.Sc. in geology at the University of California at Berkeley and a Ph.D. in oceanography at the University of Rhode Island. His is the author of Geochemistry, also published by Wiley, the editor of the Encyclopedia of Geochemistry, and the founding editor of the journal Geochemistry, Geophysics, Geosystems. He is a Geochemistry Fellow of the Geochemical Society and European Association of Geochemistry, a fellow of the AGU and an ISI highly cited researcher. He was awarded the 2022 Urey Medal of the European Association of Geochemistry.