ISBN-13: 9789401082785 / Angielski / Miękka / 2011 / 894 str.
ISBN-13: 9789401082785 / Angielski / Miękka / 2011 / 894 str.
Probably more than any other element, iron markedly influences the chemical and physical properties of soils and sediments in the earth. Considering its transition metal status, with potential variation in electronic configuration, ionic radius, and magnetic moment, combined with its abundance and relatively large mass, little wonder that one sees its unique influence on every hand. Pre sentations at the NATO Advanced Study Institute (NATO AS ) on Iron in Soils and Clay Minerals reviewed and discussed the occurrence, behavior, and properties of Fe-bearing minerals found in soils and in the clay mineral groups kaolinite, smectite, and mica. Also discussed at the NATO AS were the basic chemical properties of Fe, methods for separating and identifying Fe in minerals, and the role of Fe minerals in weathering and other soil-forming processes. The present publication is the reviewed and edited proceedings of that Advanced Study Institute. The sequence of chapters follows the general pattern beginning with introductory chapters which overview the general occurrence of Fe in the earth and its chemistry, both generally and in mineral environments, followed by identification and characterization methods for Fe and Fe phases in minerals. The properties and behavior of Fe oxides, Fe-bearing clay minerals, and other Fe minerals in soils are then described, and the text ends with a summary of the role of Fe in soil-forming processes. A Table of Contents and subject index are provided to assist the reader in finding specific topics within the text."
` ... is really valuable and useful. It is not only a reference book but moreover a complete and rigorous study treatise, indispenssable for all prsons who need to learn about iron and its compounds, including the organic complexes and microbiological reactions. It plainly satisfies these aims and should be compulsory reading for university and research institute libraries. It is valuable for any scientist related with soil science, geology, sedimentology, geochemistry, mineralogy, or, more in general, anybody connected with the geosciences. It also provides a very good, up to date revision of iron literature up to 1987 and is, therefore, a rich source of information.'
Geoderma, 47:1
1. The Geobiochemical Cycle of Iron.- 1-1. Geochemical Characterization of Iron.- 1-2. Geochemical Behavior of Iron in the Weathering Environment.- 1-3. Iron in Organisms and Soil Organic Matter.- 1-3.1. Fe-Bearing Compounds in Organisms.- 1-3.2. Quantitative Relationships.- Literature Cited.- 2. An Introduction to Physical and Chemical Principles.- 2-1. Introduction.- 2-2. Nuclear Properties’and their Importance in Spectroscopy.- 2-3. Electronic Properties — Free Ions.- 2-4. Electronic Properties — Crystal Field Theory.- 2-5. Electronic Properties — Molecular Orbital Theory.- Literature Cited.- 3. Solubility and Redox Equilibria of Iron Compounds in Soils.- 3-1. Introduction.- 3-2. Equilibrium Reactions of Iron.- 3-3. Solubility of Iron(III) Oxides in Soils.- 3-4. Other Iron(III) Minerals.- 3-5. Hydrolysis of Iron(III).- 3-6. Other Iron(III) Complexes in Soils.- 3-7. Effect of Redox on Iron(II) Solubility.- 3-8. Effect of Redox on Total Iron Solubility.- 3-9. Electron Titration of Soils.- 3-10. Effect of Redox on Smectite Stability.- 3-11. Role of Chelation in Iron Solubility.- 3-11.1. Measuring Fe3+ Solubility in Soils.- 3-11.2. Role of Chelation in Iron Availability.- 3-12. Problems.- Literature Cited.- 4. Separation and Concentration of Iron-Containing Phases.- 4-1. Introduction.- 4-2. Physical Separation Procedures.- 4-2.1. Manual Separation of Iron-Rich Areas.- 4-2.2. Wet Sieving to Concentrate Iron-Rich Concretions.- 4-2.3. Particle Size Separation.- 4-2.4. Density Gradient Separation.- 4-2.5. Magnetic Separation.- Hand Magnet.- High Gradient Magnetic Separation.- 4-3. Chemical Separation Procedures.- 4-3.1. Dissolution of Aluminosilicates Using Strong Bases.- Acknowledgments.- Literature Cited.- 5. Phase Identification by Selective Dissolution Techniques.- 5-1. Introduction.- 5-1.1. Specificity and Selectivity.- 5-2. Dissolution Techniques.- 5-2.1. The Pyrophosphate Technique(s).- 5-2.2. The Oxalate Technique.- 5-2.3. The EDTA Technique.- 5-2.4. The Dithionite-Citrate-Bicarbonate Technique.- 5-3. Concluding Remarks.- Literature Cited.- 6. The Assay for Iron in Soils and Clay Minerals.- 6-1.Introduction.- 6-2. Preliminary Considerations.- 6-3. Sampling.- 6-4. Sample Preparation.- 6-5. Selective Dissolution.- 6-6. Total Dissolution.- 6-6.1.Hydrogen Peroxide.- 6-6.2. Acids.- 6-6.3. Ashing.- 6-6.4.Decomposition with Mineral Acids.- 6-6.5. Fusions.- 6-6.6.Resistant Minerals.- 6-6.7. Iron(II).- 6-7. The Determination of Iron.- 6-7.1. Titrimetry.- 6-7.2.Colorimetry.- 6-7.3.Electrical.- 6-7.4.Instrumental Analysis.- 6-8. Precision, Accuracy, and Reference Materials.- Acknowledgements.- Literature Cited.- 7. Introduction to Crystal Structures of Iron-Containing Minerals.- 7-1.Introduction.- 7-2. Chain Silicates.- 7-2.1. Olivine.- 7-2.2.Pyroxenes.- 7-2.3.Amphiboles.- 7-2.4.Garnet.- 7-3. Phyllosilicate Clay Minerals.- 7-4. Iron Oxides.- 7-3.1.Hematite.- 7-3.2.Umenite.- 7-3.3.Magnetite.- 7-3.4.Maghemite.- 7-3.5. Goethite.- 7-3.6.Lepidocrocite.- 7-3.7.Akaganéite.- 7-3.8.Ferrihydrite and Feroxyhite.- Acknowledgements.- Literature Cited.- 8. The Application of Micro-Beam Methods to Iron Minerals in Soils.- 8-1.Introduction.- 8-2. Diffraction Theory.- 8-3. X-ray Diffraction.- 8-3.1.Mineral Identification.- 8-3.2. Crystal Size Estimation.- 8-3.3.Unit Cell Dimensions.- 8-3.4.Examples.- Goethite.- Lepidocrocite.- Hisingerite.- Nontronite.- 8-4. Transmission Electron Microscopy.- 8-4.1. Electron Diffraction.- Selected Area Diffraction (SAD).- Single-Crystal Diffraction.- 8-4.2. Electron Imaging.- Bright Field.- Dark Field.- n-Beam Images — High Resolution TEM.- 8-4.3. Specimen Preparation.- Grain Mounts.- Ion Thinning.- Microtomed Sections.- 8-4.4. Examples.- Goethite.- Hisingerite.- Ferrihydrite.- Iron Mineral Formation in Weathering.- 8-4.5. Analytical Electron Microscopy.- Literature Cited.- 9. Some Properties of Soil and Synthetic Iron Oxides.- 9-1.Introduction.- 9-2. Color.- 9-3. Crystal Morphology and Size.- 9-3.1. General Morphology.- 9-3.2.Crystal Size and Morphological Variations.- Electron Microscopy.- X-ray Diffraction.- 9-3.3.Môssbauer Spectroscopy.- 9-4. Surface Area.- 9-4.1.Gas and Dipole Adsorption.- 9-4.2.Phosphate Adsorption.- 9-4.3. X-ray Diffraction Line Broadening.- 9-5. Isomorphous Substitution.- 9-5.1. Aluminum.- 9-5.2. Other Metals.- 9-6. Thermal Behavior.- 9-7. Dissolution Kinetics.- 9-9. Interactions with Clay Silicates.- 9-10. Future Work.- Literature Cited.- 10. Introduction to the Surface Charge Properties of Iron oxides and Oxidic Soils.- 10-1. Introduction.- 10-2. Charging Phenomena at Iron Oxide Interfaces.- 10-2.1. Charge Development in the Presence of Indifferent Electrolytes.- 10-2.2. Charge Development in the Presence of Specifically Adsorbed Ions.- 10-2. Surface Charge Characteristics of Highly Weathered Soils Rich in Oxides.- Literature Cited.- 11. Occurrence and Formation of Iron Oxides in Various Pedoenvironments.- 11-1. Introduction.- 11-1.1. Role of Iron(III) Oxides in Pedogenesis.- 11-1.2. Basic Reactions.- 11-1.3. Ways to Study the Relationship Between Iron(III) Oxides and Pedoenvironments.- 11-2. Pedoenvironments and Iron(III) Oxide Minerals.- 11-2.1. The Goethite-Hematite Pair.- Soil Temperature and Soil Water Activity.- Organic Matter.- Soil Acidity.- Aluminum.- Mechanism of Hematite and Goethite Formation from Ferrihydrite.- Conclusions.- 11-2.2. Lepidocrocite.- Occurrence in Various Soils.- The Lepidocrocite-Goethite Pair.- Conclusions.- 11-2.3. Ferrihydrite.- General Remarks.- Formation in Various Pedoenvironments.- Conclusions.- 11-2.4. Maghemite and Magnetite.- Maghemite.- Magnetite.- 11-3. Pedoenvironments and Aluminum Substitutions.- 11-3.1. General Remarks.- 11-3.2. Goethite.- 11-3.3. Hematite and Other Iron(III) Oxides 301.- 11-4. Conclusions and Future Work.- Literature Cited.- 12. Properties and Behavior of Iron Oxides as Determined by Mossbauer Spectroscopy.- 12-1. Principles of Mossbauer Spectroscopy.- 12-1.1 Introduction.- 12-1.2. Hyperfine Interactions.- 12-2. Effects of Magnetic Properties on Mossbauer Spectroscopy.- 12-2.1. The Neel Temperature and the Magnetic Hyperfine Field.- 12-2.2. The Quadrupole Interaction in Magnetically Ordered Materials.- 12-2.3. Nonideal Behavior: Superparamagnetic Relaxation and Related Phenomena.- 12-3. Variatons of the Magnetic Hyperfine Field in Crystalline Iron Oxides.- 12-3.1. Influence of A1 Substitution.- 12-3.2. Influence of Crystallinity.- 12-4. Magnetic Hyperfine Field Distributions.- 12-5. Selected Mineral Examples.- 12-5.1. Hematite.- Room-Temperature Spectra.- Low-Temperature Spectra.- 12-5.2. Goethite.- Room-Temperature Mossbauer Spectra.- Low-Temperature Spectra.- 12-5.3. Ferrihydrite.- Room-Temperature Mossbauer Spectra.- Low-Temperature Spectra.- 12-5.4. Magnetite and Maghemite.- 12-5.5. Transient Phases: The Green Rusts.- Acknowledgements.- Literature Cited.- 13. Iron Compounds as Indicators of Pedogenic Processes: Examples from the Southern Hemisphere.- 13-1. Introduction.- 13-2. Ferruginous Pedogenic Materials.- 13-2.1. Overall Occurrences: Some General Considerations.- Climatic Considerations.- Paleographic Considerations.- 13-2.2. Localized Occurrences: Some Specific Considerations.- Red and Yellow Ferruginous Soils With Varying Base Status.- Black Cracking Clays.- Ferruginous Duricrusts.- 13.3. Iron Compounds.- 13-3.1. Magnetic Iron Oxides.- Primary and Secondary Magnetic Iron Oxides.- Authigenic Magnetic Iron Oxides.- 13-3.2. Goethite.- 13-3.3. Hematite.- 13-3.4. Lepidocrocite.- 13-3.5. Ferrihydrite and Feroxyhite.- 13-3.6. Secondary Layer-Silicate Iron.- 13-3.7. Organically Complexed Iron.- 13-3.8. Other Iron Minerals.- 13-4. Pedogenic Linkages between the Ferruginous Pedogenic Materials and Iron Compounds.- 13-4.1. Continental Scale: Age, Parent Materials, and Climate.- Magnetic Fe-Oxides.- Ferrihydrite in Cryumbrepts (Afro-Alpine Soils) and Vertisols.- Goethite and Hematite in Oxisols, Ultisols, and Aridisols.- Al-Substituted Goethites and Hematites in Ferricretes and Red-Brown Hardpans.- Goethite-Hematite Ratio: Distribution of Red and Yellow Soils.- Al-Substituted Goethites and Hematites: An Indicator of Contemporary and Fossil Soil Formation.- Lepidocrocites: An Indicator of Certain Reductomorphic Pedogenic Environments in Humid Temperate Climates.- 13-4.2. Local Landscape Scale.- Effects of Altitude and Aspect on Goethite and Hematite Formation.- Effects of Slope and Hydrology on Goethite and Hematite Formation and Transformation.- Effects of Altitude, Aspect, Slope, and Hydrology on Maghemite Formation and Transformation.- Effects of Topography and Hydrology on the Forma tion and Transformation of Iron-Rich Smectites.- 13-4.3. Profile Scale.- Formation and Transformation of Goethite and Hematite at the Profile Scale.- Formation and Transformation of Magnetic Fe Oxides at the Profile Scale.- Formation and Transformation of Lepidocrocite at the Profile Scale.- 13-4.4. Micro-Pedological Scale.- Mottles and Ferricrete Fragments: Soil Matrix Comparisons.- Ferruginous Bauxite Nodules: Soil Matrix Comparisons.- Pipestems: Soil Matrix Comparisons.- Magnetic and Non-Magnetic Glaebules: Soil Matrix Comparisons.- influence of Heat From Forest Fires.- Placic Horizons: Soil Matrix Comparisons.- 13-5. Summary and Conclusions.- Acknowledgements.- Literature Cited.- 14. Magnetic Properties of Iron in Soil Iron Oxides and Clay Minerals.- 14-1. Introduction.- 14-2. Paramagnetism.- 14-2.1. Susceptibility and Magnetization of Iron(III).- 14-2.2. Susceptibility and Magnetization of Iron(II).- 14-3. Collective Magnetic Order.- 14-3.1. Ferromagnetic Interactions.- 14-3.2. Antiferromagnetic Interactions.- Antiferromagnetism.- Ferrimagnetism.- Speromagnetism.- 14-3.3. Ferromagnetic and Antiferromagnetic Interactions.- 14-3.4. Anisotropic and Antisymmetric Exchange.- 14-3.5. Chemical Disorder.- 14-3.6. Domain Effects.- 14-3.7. Fine Particle Effects.- Surface Spin Structures and Moments of Fine Particles.- Superparamagnetism.- 14-4. Experimental Techniques.- 14-4.1. Susceptibility.- 14-4.2. Magnetization.- 14-4.3. Natural Remanence.- 14-4.4. Hyper fine Interactions.- 14-4.5. Magnetic Structures.- 14-5. Iron Oxides.- 14-5.1. Hematite.- 14-5.2. Ilmenite.- 14-5.3. Magnetite.- 14-5.4. Maghemite.- Titanomaghemites.- Magnetic Soils.- 14-5.5. Goethite.- 14-5.6. Other Crystalline Ferric Hydroxides.- 14-5.7. Disordered and Amorphous Ferric Hydroxides.- 14-5.8. Other Minerals.- 14-6. Clay Minerals.- 14-6.1. Triocta’nedrai Iron(II) Minerals.- Mössbauer Spectra.- Magnetic Properties.- Neutron Diffraction.- Computer Experiments.- 14-6.2. Trioctahedral Iron(IIl) Minerals.- 14-6.3. Dioctahedral Minerals.- 14- 6.4. Summary.- Acknowledgements.- Appendix: Quantitites and Units.- Literature Cited.- 15. Structural Iron in Kaolinites and in Associated Ancillary Minerals.- 15-1. Introduction.- 15-2. Terminology and Crystal Structure.- 15-3. Deposits.- 15-4. General Properties.- 15-4.1. Shape and Size.- 15-4.2. Rheological Properties.- 15-5. Analysis and Mineralogy.- 15-5.1. Elemental Analysis.- 15-5.2. Mineralogical Analysis.- 15-5.3. Illustrative Analyses.- 15-5.4. Iron in the Kaolinite Structure.- 15-5.5. Iron Oxides and Oxyhydroxides.- 15-5.6. Iron in the Ancillary Minerals.- 15-5.7. Titanoferrous Impurities.- 15-6. Optical Properties.- 15-6.1. Introduction to Absorption and Scattering.- 15-6.2. Kubelka-Munk Equations.- 15-6.3. Significance of k and s.- 15-6.4. Measurement of k ands.- 15-6.5. Measurement of Reflectance and Brightness.- 15-6.6. Brightness Values.- 15-6.7. Experimental Values of k and s.- 15-6.8. The Scattering Coefficient 495 15-6.9. The Absorption Coefficient.- 15-6.10. Interpretation of Light Absorption.- 15-7. Ceramics.- 15-8. Commercial Production of Kaolin.- 15-8.1. Reactions with Sodium Dithionite.- 15-8.2. Magnetic Separation.- Principles.- Commercial Applications.- Research Applications.- 15- 8.3. Micromineral Separation.- Froth Flotation.- Selective Flocculation.- Selective Coagulation.- Acknowledgements.- Literature Cited.- 16. Role of Iron in Mica Weathering.- 16-1. Introduction.- 16-2. Status of Iron in Micas.- 16-2.1. Occurrence.- 16-2.2. Location.- 16-2.3. Determination.- 16-2.4. Variability.- 16-3. Naturally Weathered Micas.- 16-3.1. Theoretical Considerations.- 16-3.2. Changes Observed.- 16-4. Mica Dissolution.- 16-4.1. Principles.- 16-4.2. K Release.- 16-4.3. Hydrolysis and Precipitation.- 16-4.4. Complexation.- 16-4.5. General Aspects.- 16-5. Chemically Induced Redox Changes.- 16-5.1. Laboratory Conditions for Oxidation.- 16-5.2. Relevance of Mica Expansion.- 16-5.3. Br 2- and H2 O2 -Treated Mica.- 16-5.4. Structural Fe Reduction.- 16-6. Mica Alterations by Wet Redox Treatmemts.- 16-6.1. Visible Changes.- 16-6.2. Interlayer K.- 16-6.3. Chemical Composition.- 16-6.4. Structural Properties.- 16-7. Thermally Altered Micas.- 16-7.1. General Approach 59716-7.2. Macro Flakes.- 16-7.3. Structural Fe.- 16-7.4. Inter layer K.- Acknowledgements.- Literature Cited.- 17. Structural Iron in Smectites.- 17-1. Introduction.- 17-2. Composition and Origin of Iron-Bearing Smectites.- 17-2.1. Classification.- 17-2.2. Natural and Synthetic Formation.- 17-2.3. Site Occupancy of Iron.- 17-3. Methods of Characterization.- 17-3.1. Infrared Spectroscopy.- 17-3.2. Mossbauer Spectroscopy and Other Nuclear Techniques.- 17-3.3. UV-Visible Spectroscopy.- 17-4. Effects of Structural Iron on Smectite Properties.- 17-4.1. Surface Area.- 17-4.2. Layer Charge and Cation Exchange Capacity.- 17-4.3. Swelling in Water.- 17-4.4. Color.- 17-4.5. Crystallographic b-Dimension.- 17-4.6. Chemical Stability.- 17-5. Redox Processes and Mechanisms.- 17-5.1. Oxidation of Iron(II) Smectites.- 17-5.2. Reduction of Iron(III) Smectites.- Literature Cited.- 18. The Characterization of Iron Complexes with Soil Organic Matter.- 18-1. Introduction.- 18-2. The Bonding of Iron to Humic Substances.- 18-3. Bonding of Iron to Organic Matter in Soils.- Literature Cited.- 19. Chemistry of Iron in Calcareous Systems.- 19-1. Introduction.- 19-2. Iron Oxides in Calcareous Soils.- 19-3. Equilibrium Relations of CaC03.- 19-4. Equilibrium Relations of Iron in Calcareous Systems.- 19-5. Synthetic Systems for Studying the Reactions of Aqueous Iron with CaCO3.- 19-6. Reactions of Iron with CaC03.- 19-7. Iron Oxides Formed During the Reactions of Iron with CaC03.- 19-8. Iron Oxides and the Availability of Iron to Plants in Calcareous Systems.- 19-9. Influence of Soil Components on the Reactions of Iron in Calcareous Systems.- 19-10. Implications of Synthetic Studies to the Management of Iron in Calcareous Soils.- 19-11. Conclusions.- Acknowledgements.- Literature Cited.- 20. Microbiological Reactions of Iron in Soils.- 20-1. Introduction.- 20-2. Preliminary Note on the Iron(II)/Iron(III) Redox System.- 20-3. Oxidation of Iron(II).- 20-3.1. Thiobacillus Ferrooxidans.- 20-3.2. Mechanism of Oxidation.- 20-3.3. Biomass Yield of the Reaction.- 20-3.4. Other Acidophilic Fe Organisms.- 20-4. Neutral pH Iron Oxidizing Bacteria….- 20-5. Decomposition of Organic Iron(II) Complexes.- 20-6. Types of Iron(III) Oxides Formed by Bacteria.- 20-7. Reduction of Iron(III).- 20-7.1. Source of Electrons for Iron(III) Reduction.- 20-7.2. Mechanism of Iron(III) Reduction.- 20-8. Rate of Reduction.- 20-8.1. Methods for Determination of Reduction Rates.- 20-9. Factors Influencing the Rate of Reduction.- 20-9.1. Types of Microorganisms.- 20-9.2. Bacterial Activity.- 20-9.3. Types and Concentration of Iron(III) Oxides.- 20-9.4. Sinks for Iron(II).- 20-10. Alteration of Other Iron Minerals.- Literature Cited.- 21. The Fate of Iron During Soil Formation in Humid-Temperate Environments.- 21-1. Introduction.- 21-2. Weathering and Braunification.- 21-3. Lessivage.- 21-4. Podzolization.- 21-5. Processes of Reductomorphism.- 21-5.1. Surfacewater Soils.- 21-5.2. Groundwater Soils.- 21-5.3. Dry Reductomorphism.- 21-6. Lateral Translocation of Iron in Landscapes.- Acknowledgements.- Literature Cited.- 22. Laterites and Laterization Processes.- 22-1. Definition and Concepts.- 22-1.1. Laterites.- 22-1.2. Relative and Absolute Accumulation of Sesquioxides.- 22-2. A Sketch of a “Typical” Laterite Profile.- 22-3. Isovolumetric Chemical Balances.- 22-3.1. General Comments.- 22-3.2. Isovolumetric Chemical Balances in the Diouga Laterite.- 22-4. Absolute Accumulation of Iron — The Epigenetic Replacement of Kaolinite by Hematite.- 22-4.1. Petrographic Observations.- 22-4.2. Inferences.- 22-5. The Hardening of the Iron Crust: The Transformation of the Soft Yellow Plasma Into Purple-Red Nodules and the Individualization of Pisolites.- 22-6. Mineralogy Versus Morphology.- 22-6.1. The Diouga Laterite.- Kaolinites.- Hematites.- Goethites.- 22-6.2. Tentative Generalizations.- Kaolinites.- Iron Oxides.- Literature Cited.- 23. Effects of Seasonal Redox Processes Involving Iron on the Chemistry of Periodically Reduced Soils.- 23-1. Introduction.- 23-2. Redox Processes in Soils and the Role of Iron.- 23-3. Forms of Iron(II) in Reduced Soils.- 23-4. Changes in Electrochemistry and Solution Chemistry of Soils Due to Reduction of Iron(III).- Acknowledgements.- Literature Cited.- 24. Long-Term Chemical, Mineralogical, and Morphological Effects of Iron-Redox Processes in Periodically Flooded Soils.- 24-1. Introduction.- 24-2. Ferrolysis.- 24-3. Segregation of Iron Due to Redox Processes.- 24-4. Mineralogy of Iron(III) Oxides in Periodically Flooded Soils.- Acknowledgements.- Literature Cited.- 25. Redox Processes of Iron and Sulfur Involved in the Formation of Acid Sulfate Soils.- 25-1. Introduction.- 25-2. Formation of Pyrite.- 25-3. Oxidation of Pyrite.- 25-4. Oxidation Products of Pyrite.- 25-5. Nontronite Formation Associated With Pyrite Oxidation.- Acknowledgements.- Literature Cited.
1997-2024 DolnySlask.com Agencja Internetowa