ISBN-13: 9781119527923 / Angielski / Twarda / 2020 / 320 str.
ISBN-13: 9781119527923 / Angielski / Twarda / 2020 / 320 str.
About the Editors xiiiList of Contributors xviiPreface xxiiiAcknowledgments xxixPart I IoT Overview 11 Introduction to IoT 3Anshuman Kalla, Pawani Prombage, and Madhusanka Liyanage1.1 Introduction 41.1.1 Evolution of IoT 41.2 IoT Architecture and Taxonomy 51.3 Standardization Efforts 71.4 IoT Applications 101.4.1 Smart Home 111.4.2 Smart City 131.4.3 Smart Energy 141.4.4 Healthcare 151.4.5 IoT Automotive 161.4.6 Gaming, AR and VR 161.4.7 Retail 171.4.8 Wearable 181.4.9 Smart Agriculture 181.4.10 Industrial Internet 191.4.11 Tactile Internet 191.4.12 Conclusion 20Acknowledgement 20References 202 Introduction to IoT Security 27Anca D. Jurcut, Pasika Ranaweera, and Lina Xu2.1 Introduction 272.2 Attacks and Countermeasures 292.2.1 Perception Layer 302.2.2 Network Layer 332.2.3 Application Layer 342.3 Authentication and Authorization 412.3.1 Authentication 422.3.2 Authorization 422.3.3 Authentication at IoT Layers 432.4 Other Security Features and Related Issues 482.4.1 The Simplified Layer Structure 482.4.2 The Idea of Middleware 492.4.3 Cross-Layer Security Problem 502.4.4 Privacy 502.4.5 Risk Mitigation 512.5 Discussion 522.6 Future Research Directions 542.6.1 Blockchain 542.6.2 5G 552.6.3 Fog and Edge Computing 562.6.4 Quantum Security, AI, and Predictive Data Analytics 572.6.5 Network Slicing 572.7 Conclusions 58References 59Part II IoT Network and Communication Authentication 653 Symmetric Key-Based Authentication with an Application to Wireless Sensor Networks 67An Braeken3.1 Introduction 673.2 Related Work 693.3 System Model and Assumptions 703.3.1 Design Goals 703.3.2 Setting 703.3.3 Notations 713.3.4 Attack Model 713.4 Scheme in Normal Mode 723.4.1 Installation Phase 723.4.2 Group Node Key 733.4.3 Individual Cluster Key 733.4.4 Pairwise Key Derivation 743.4.5 Multicast Key 763.4.6 Group Cluster Key 763.5 Authentication 773.5.1 Authentication by CN 773.5.2 Authenticated Broadcast by the CH 773.5.3 Authenticated Broadcast by the BS 783.6 Scheme in Change Mode 783.6.1 Capture of CN 783.6.2 Capture of CH 793.6.3 Changes for Honest Nodes 793.7 Security Analysis 803.7.1 Resistance Against Impersonation Attack 803.7.2 Resistance Against Node Capture 813.7.3 Resistance Against Replay Attacks 813.8 Efficiency 813.8.1 Number of Communication Phases 813.8.2 Storage Requirements 823.8.3 Packet Fragmentation 823.9 Conclusions 83Acknowledgement 83References 834 Public Key Based Protocols - EC Crypto 85Pawani Porambage, An Braeken, and Corinna Schmitt4.1 Introduction to ECC 854.1.1 Notations 864.1.2 ECC for Authentication and Key Management 874.2 ECC Based Implicit Certificates 884.2.1 Authentication and Key Management Using ECC Implicit Certificates 884.3 ECC-Based Signcryption 914.3.1 Security Features 934.3.2 Scheme 934.4 ECC-Based Group Communication 954.4.1 Background and Assumptions 954.4.2 Scheme 964.5 Implementation Aspects 974.6 Discussion 98References 985 Lattice-Based Cryptography and Internet of Things 101Veronika Kuchta and Gaurav Sharma5.1 Introduction 1015.1.1 Organization 1025.2 Lattice-Based Cryptography 1025.2.1 Notations 1025.2.2 Preliminaries 1035.2.3 Computational Problems 1045.2.4 State-of-the-Art 1055.3 Lattice-Based Primitives 1065.3.1 One-Way and Collision-Resistant Hash Functions 1065.3.2 Passively Secure Encryption 1065.3.3 Actively Secure Encryption 1075.3.4 Trapdoor Functions 1075.3.5 Gadget Trapdoor 1085.3.6 Digital Signatures without Trapdoors 1085.3.7 Pseudorandom Functions (PRF) 1095.3.8 Homomorphic Encryption 1105.3.9 Identity-Based Encryption (IBE) 1115.3.10 Attribute-Based Encryption 1125.4 Lattice-Based Cryptography for IoT 1135.5 Conclusion 115References 115Part III IoT User Level Authentication 1196 Efficient and Anonymous Mutual Authentication Protocol in Multi-Access Edge Computing (MEC) Environments 121Pardeep Kumar and Madhusanka Liyanage6.1 Introduction 1216.2 Related Work 1236.3 Network Model and Adversary Model 1246.3.1 Network Model 1246.3.2 Adversary Model 1256.4 Proposed Scheme 1256.4.1 System Setup for the Edge Nodes Registration at the Registration Center 1256.4.2 User Registration Phase 1266.4.3 Login and User Authentication Phase 1266.4.4 Password Update Phase 1276.5 Security and Performance Evaluation 1276.5.1 Informal Security Analysis 1276.5.2 Performance Analysis 1296.6 Conclusion 130References 1307 Biometric-Based Robust Access Control Model for Industrial Internet of Things Applications 133Pardeep Kumar and Gurjot Singh Gaba7.1 Introduction 1337.2 Related Work 1347.3 Network Model, Threat Model and Security Requirements 1367.3.1 Network Model 1367.3.2 Threat Model 1367.3.3 Security Goals 1367.4 Proposed Access Control Model in IIoT 1367.4.1 System Setup 1377.4.2 Authentication and Key Establishment 1387.5 Security and Performance Evaluations 1397.5.1 Informal Security Analysis 1397.5.2 Performance Analysis 1407.6 Conclusions 141References 1428 Gadget Free Authentication 143Madhusanka Liyanage, An Braeken, and Mika Ylianttila8.1 Introduction to Gadget-Free World 1438.2 Introduction to Biometrics 1468.3 Gadget-Free Authentication 1488.4 Preliminary Aspects 1498.4.1 Security Requirements 1498.4.2 Setting 1498.4.3 Notations 1508.5 The System 1508.5.1 Registration Phase 1518.5.2 Installation Phase 1518.5.3 Request Phase 1518.5.4 Answer Phase 1528.5.5 Update Phase 1538.6 Security Analysis 1538.6.1 Accountability 1538.6.2 Replay Attacks 1538.6.3 Insider Attacks 1538.6.4 HW/SW Attacks 1548.6.5 Identity Privacy 1548.7 Performance Analysis 1548.7.1 Timing for Cryptographic/Computational Operation 1558.7.2 Communication Cost 1558.8 Conclusions 156Acknowledgement 156References 1569 WebMaDa 2.1 - A Web-Based Framework for Handling User Requests Automatically and Addressing Data Control in Parallel 159Corinna Schmitt, Dominik Bünzli, and Burkhard Stiller9.1 Introduction 1599.2 IoT-Related Concerns 1609.3 Design Decisions 1629.4 WebMaDa's History 1639.5 WebMaDa 2.1 1669.5.1 Email Notifications 1669.5.2 Data Control Support 1719.6 Implementation 1739.6.1 Mailing Functionality 1739.6.2 Logging Functionality 1759.6.3 Filtering Functionality 1769.7 Proof of Operability 1769.7.1 Automated Request Handling 1779.7.2 Filtering Functionality Using Logging Solution 1829.8 Summary and Conclusions 182References 183Part IV IoT Device Level Authentication 18510 PUF-Based Authentication and Key Exchange for Internet of Things 187An Braeken10.1 Introduction 18710.2 Related Work 18910.2.1 Key Agreement from IoT Device to Server 18910.2.2 Key Agreement between Two IoT Devices 19010.3 Preliminaries 19110.3.1 System Architecture 19110.3.2 Assumptions 19210.3.3 Attack Model 19210.3.4 Cryptographic Operations 19310.4 Proposed System 19410.4.1 Registration Phase 19510.4.2 Security Association Phase 19510.4.3 Authentication and Key Agreement Phase 19510.5 Security Evaluation 19710.6 Performance 19910.6.1 Computational Cost 19910.6.2 Communication Cost 20010.7 Conclusions 201References 20211 Hardware-Based Encryption via Generalized Synchronization of Complex Networks 205Lars Keuninckx and Guy Van der Sande11.1 Introduction 20511.2 System Scheme: Synchronization without Correlation 20811.2.1 The Delay-Filter-Permute Block 21111.2.2 Steady-State Dynamics of the DFP 21411.2.3 DFP-Bitstream Generation 21411.2.4 Sensitivity to Changes in the Permutation Table 21511.3 The Chaotic Followers 21711.3.1 The Permute-Filter Block 21711.3.2 Brute Force Attack 21911.3.3 PF-Bitstream Generation 21911.4 The Complete System 22011.4.1 Image Encryption Example 22011.4.2 Usage for Authentication 22111.5 Conclusions and Outlook 222Acknowledgements 223Author Contributions Statement 223Additional Information 223References 223Part V IoT Use Cases and Implementations 22512 IoT Use Cases and Implementations: Healthcare 227Mehrnoosh Monshizadeh, Vikramajeet Khatri, Oskari Koskimies, and Mauri Honkanen12.1 Introduction 22712.2 Remote Patient Monitoring Architecture 22812.3 Security Related to eHealth 22912.3.1 IoT Authentication 23112.4 Remote Patient Monitoring Security 23412.4.1 Mobile Application Security 23412.4.2 Communication Security 23512.4.3 Data Integrity 23512.4.4 Cloud Security 23512.4.5 Audit Logs 23612.4.6 Intrusion Detection Module 23612.4.7 Authentication Architecture 24012.4.8 Attacks on Remote Patient Monitoring Platform 24212.5 Conclusion 242References 24413 Secure and Efficient Privacy-preserving Scheme in Connected Smart Grid Networks 247An Braeken and Pardeep Kumar13.1 Introduction 24713.1.1 Related Work 24913.1.2 Our Contributions 25013.1.3 Structure of Chapter 25113.2 Preliminaries 25113.2.1 System Model 25113.2.2 Security Requirements 25113.2.3 Cryptographic Operations and Notations 25213.3 Proposed Scheme 25313.3.1 Initialisation Phase 25313.3.2 Smart Meter Registration Phase 25313.3.3 Secure Communication Between Smart Meter and Aggregator 25413.4 Security Analysis 25513.4.1 Formal Proof 25513.4.2 Informal Discussion 25813.5 Performance Analysis 26013.5.1 Computation Costs 26013.5.2 Communication Costs 26113.6 Conclusions 262References 26214 Blockchain-Based Cyber Physical Trust Systems 265Arnold Beckmann, Alex Milne, Jean-Jose Razafindrakoto, Pardeep Kumar, Michael Breach, and Norbert Preining14.1 Introduction 26514.2 Related Work 26814.3 Overview of Use-Cases and Security Goals 26914.3.1 Use-Cases 26914.3.2 Security Goals 27014.4 Proposed Approach 27014.5 Evaluation Results 27214.5.1 Security Features 27214.5.2 Testbed Results 27314.6 Conclusion 276References 276Index 279
MADHUSANKA LIYANAGE, D.Sc (Tech), is Assistant Professor, School of Computer Science, University College Dublin, Ireland; Centre for Wireless Communications, University of Oulu, Finland.AN BRAEKEN, PHD, is Professor, Industrial Sciences Department, Vrije Universiteit Brussels, Belgium.PARDEEP KUMAR, PHD, is Lecturer/Assistant Professor, Department of Computer Science, Swansea University, Wales, UKMIKA YLIANTTILA, D.Sc (Tech), is Associate Professor, Centre for Wireless Communications, University of Oulu, Finland.
1997-2024 DolnySlask.com Agencja Internetowa