• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Introduction to Statistical Machine Learning » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Introduction to Statistical Machine Learning

ISBN-13: 9780128021217 / Angielski / Miękka / 2015 / 534 str.

Sugiyama, Masashi
Introduction to Statistical Machine Learning Sugiyama, Masashi   9780128021217 Elsevier Science - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Introduction to Statistical Machine Learning

ISBN-13: 9780128021217 / Angielski / Miękka / 2015 / 534 str.

Sugiyama, Masashi
cena 496,51
(netto: 472,87 VAT:  5%)

Najniższa cena z 30 dni: 492,45
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.

  • Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus.
  • Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning.
  • Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks
  • Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Machine Theory
Wydawca:
Elsevier Science
Język:
Angielski
ISBN-13:
9780128021217
Rok wydania:
2015
Ilość stron:
534
Waga:
1.08 kg
Wymiary:
23.37 x 19.05 x 2.54
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

"The probabilistic and statistical background is well presented, providing the reader with a complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning." --Zentralblatt MATH

Part I: Introduction to Statistics and Probability1. Random variables and probability distributions2. Examples of discrete probability distributions3. Examples of continuous probability distributions4. Multi-dimensional probability distributions5. Examples of multi-dimensional probability distributions6. Random sample generation from arbitrary probability distributions7. Probability distributions of the sum of independent random variables8. Probability inequalities9. Statistical inference10. Hypothesis testing

Part II: Generative Approach to Statistical Pattern Recognition11. Fundamentals of statistical pattern recognition12. Criteria for developing classifiers13. Maximum likelihood estimation14. Theoretical properties of maximum likelihood estimation15. Linear discriminant analysis16. Model selection for maximum likelihood estimation17. Maximum likelihood estimation for Gaussian mixture model18. Bayesian inference19. Numerical computation in Bayesian inference20. Model selection in Bayesian inference21. Kernel density estimation22. Nearest neighbor density estimation

Part III: Discriminative Approach to Statistical Machine Learning23. Fundamentals of statistical machine learning24. Learning Models25. Least-squares regression26. Constrained least-squares regression27. Sparse regression28. Robust regression29. Least-squares classification30. Support vector classification31. Ensemble classification32. Probabilistic classification33. Structured classification

Part IV: Further Topics34. Outlier detection35. Unsupervised dimensionality reduction36. Clustering37. Online learning38. Semi-supervised learning39. Supervised dimensionality reduction40. Transfer learning41. Multi-task learning

Masashi Sugiyama received the degrees of Bachelor of Engineering, Master of Engineering, and Doctor of Engineering in Computer Science from Tokyo Institute of Technology, Japan in 1997, 1999, and 2001, respectively. In 2001, he was appointed Assistant Professor in the same institute, and he was promoted to Associate Professor in 2003. He moved to the University of Tokyo as Professor in 2014. He received an Alexander von Humboldt Foundation Research Fellowship and researched at Fraunhofer Institute, Berlin, Germany, from 2003 to 2004. In 2006, he received a European Commission Program Erasmus Mundus Scholarship and researched at the University of Edinburgh, Edinburgh, UK. He received the Faculty Award from IBM in 2007 for his contribution to machine learning under non-stationarity, the Nagao Special Researcher Award from the Information Processing Society of Japan in 2011 and the Young Scientists' Prize from the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology Japan for his contribution to the density-ratio paradigm of machine learning. His research interests include theories and algorithms of machine learning and data mining, and a wide range of applications such as signal processing, image processing, and robot control.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia