• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Introduction to Simple Shock Waves in Air: With Numerical Solutions Using Artificial Viscosity » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Introduction to Simple Shock Waves in Air: With Numerical Solutions Using Artificial Viscosity

ISBN-13: 9783030025649 / Angielski / Twarda / 2019 / 247 str.

Sean Prunty
Introduction to Simple Shock Waves in Air: With Numerical Solutions Using Artificial Viscosity Prunty, Seán 9783030025649 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Introduction to Simple Shock Waves in Air: With Numerical Solutions Using Artificial Viscosity

ISBN-13: 9783030025649 / Angielski / Twarda / 2019 / 247 str.

Sean Prunty
cena 484,18
(netto: 461,12 VAT:  5%)

Najniższa cena z 30 dni: 462,63
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This book provides an elementary introduction to some one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner. Artificial viscosity is introduced into the numerical calculations in order to deal with shocks. The presentation is restricted to the finite-difference approach to solve the coupled differential equations of fluid flow as distinct from finite-volume or finite-element methods. This text presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Mechanical
Science > Mechanika klasyczna płynów
Mathematics > Matematyka stosowana
Wydawca:
Springer
Seria wydawnicza:
Shock Wave and High Pressure Phenomena
Język:
Angielski
ISBN-13:
9783030025649
Rok wydania:
2019
Wydanie:
2019
Ilość stron:
247
Waga:
0.56 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Wolumenów:
01

1    Brief outline of the equations of fluid flow

     1.1 Introduction

      1.2 Eulerian and Lagrangian form of the equations

      1.3 Conservation equations in plane geometry

           1.3.1 Equation of mass conservation: the continuity equation

           1.3.2 Equation of motion: the momentum equation

           1.3.3 Energy balance equation

      1.4 Constancy of the entropy with time for a fluid element

      1.5 Entropy change for an ideal gas

      1.6 Spherical geometry

           1.6.1 Continuity equation

           1.6.2 Equation of motion

           1.6.3 Equation of energy conservation

      1.7 Small amplitude disturbances: sound waves

 

2   Waves of finite amplitude

      2.1 Introduction

       2.2 Finite amplitude waves

       2.3 Change in wave profile

       2.4 Formation of a normal shock wave

       2.5 Time and place of formation of discontinuity

             2.5.1 Example: piston moving with uniform accelerated velocity

             2.5.2 Example: piston moving with a velocity >0

       2.6 Another forms of the equations: Riemann invariants

 

3   Conditions across the shock: the Rankine-Hugoniot equations

      3.1 Introduction to normal shock waves

      3.2 Conservation equations

            3.2.1 Conservation of mass

            3.2.2 Conservation of momentum

            3.2.3 Conservation of energy

      3.3 Thermodynamic relations

      3.4 Alternative notation for the conservation equations

      3.5 Rankine-Hugoniot equations

      3.6 Other useful relationships in terms of Mach number

      3.7 Fluid flow behind the shock in terms of shock wave parameters

      3.8 Reflection of a plane shock from a rigid plane surface

      3.9 Conclusions

 

4   Numerical treatment of plane shocks

     4.1 Introduction

      4.2 The need for numerical techniques

      4.3 Lagrangian equations in plane geometry with artificial viscosity

           4.3.1 Continuity equation

           4.3.2 Equation of motion

           4.3.3 Equation of energy conservation

      4.4 The differential equations for plane wave motion: a summary

      4.5 Difference equations

      4.6 Stability of the difference equations

      4.7 Grid spacing

      4.8 Numerical examples of plane shocks

            4.8.1 Piston generated shock wave

            4.8.2 Linear ramp

            4.8.3 The shock tube

            4.8.4 Tube closed at end

      4.9 Conclusions

 

5   Spherical shock waves: the self-similar solution

      5.1 Introduction

      5.2 Shock wave from an intense explosion

      5.3 The point source solution

      5.4 Talyor’s analysis of very intense shocks

            5.4.1 Momentum equation

            5.4.2 Continuity equation

            5.4.3 Energy equation

      5.5 Derivatives at the shock front

      5.6 Numerical integration of the equations

      5.7 Energy of the explosion

      5.8 The pressure

      5.9 The temperature

    5.10 The pressure-time relationship for a fixed point

    5.11 Taylor’s analytical approximations for velocity, pressure and density

            5.11.1 The velocity

            5.11.2 The pressure

            5.11.3 The density

    5.12 The density for small values of

    5.13 The temperature in the central region

    5.14 The wasted energy

    5.15 Taylor’s second paper

    5.16 Approximate treatment of strong shocks

    5.17 Conclusions

 

6   Numerical treatment of spherical shock waves

      6.1 Introduction

      6.2 Lagrangian equations in spherical geometry

            6.2.1 Momentum equation

            6.2.2 Continuity equation

            6.2.3 Energy equation

      6.3 Conservation equations in spherical geometry: a summary

      6.4 Difference equations

      6.5 Numerical solution of spherical shock waves: the point source solution

      6.6 Initial conditions using the strong-shock, point-source solution

            6.6.1 The pressure

            6.6.2 The velocity

            6.6.3 The density

      6.7 Results of the numerical integration

      6.8 Shock wave from a sphere of high pressure, high temperature gas

      6.9 Results of the numerical integration for the expanding sphere

            6.9.1 The pressure

            6.9.2 The density

            6.9.3 The velocity

    6.10 A final note

Dr. Seán Prunty is a former senior lecturer in electrical and electronic engineering at University College Cork Ireland. He has a primary degree and a Ph.D. degree, both in experimental physics, from the University of Dublin, Trinity College. He has thirty years of teaching experience and has carried out research in such areas as atomic physics and laser technology as well as in far-infrared polarimetry and electromagnetic scattering for plasma physics applications. He collaborated for many years on research in the fusion energy research area in Italy, England and Switzerland. Since his retirement in 2009 he has taken a particular interest in shock wave propagation.

This book provides an elementary introduction to some one-dimensional fluid flow problems involving shock waves in air.  The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner. Artificial viscosity is introduced into the numerical calculations in order to deal with shocks. The presentation is restricted to the finite-difference approach to solve the coupled differential equations of fluid flow as distinct from finite-volume or finite-element methods. This text presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. 


This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia