• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Introduction to Quantum Groups » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Introduction to Quantum Groups

ISBN-13: 9780817647162 / Angielski / Miękka / 2010 / 352 str.

George Lusztig
Introduction to Quantum Groups George Lusztig 9780817647162 BIRKHAUSER VERLAG AG - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Introduction to Quantum Groups

ISBN-13: 9780817647162 / Angielski / Miękka / 2010 / 352 str.

George Lusztig
cena 280,50 zł
(netto: 267,14 VAT:  5%)

Najniższa cena z 30 dni: 278,10 zł
Termin realizacji zamówienia:
ok. 10-14 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

According to Drinfeld, a quantum group is the same as a Hopf algebra. This includes as special cases, the algebra of regular functions on an algebraic group and the enveloping algebra of a semisimple Lie algebra. The qu- tum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. Although such quantum groups appeared in connection with problems in statistical mechanics and are closely related to conformal field theory and knot theory, we will regard them purely as a new development in Lie theory. Their place in Lie theory is as follows. Among Lie groups and Lie algebras (whose theory was initiated by Lie more than a hundred years ago) the most important and interesting ones are the semisimple ones. They were classified by E. Cartan and Killing around 1890 and are quite central in today's mathematics. The work of Chevalley in the 1950s showed that semisimple groups can be defined over arbitrary fields (including finite ones) and even over integers. Although semisimple Lie algebras cannot be deformed in a non-trivial way, the work of Drinfeld and Jimbo showed that their enveloping (Hopf) algebras admit a rather interesting deformation depending on a parameter v. These are the quantized enveloping algebras of Drinfeld and Jimbo. The classical enveloping algebras could be obtained from them for v - 1."

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Grupy i teoria grup
Science > Fizyka matematyczna
Mathematics > Algebra - General
Wydawca:
BIRKHAUSER VERLAG AG
Seria wydawnicza:
Modern Birkhauser Classics
Język:
Angielski
ISBN-13:
9780817647162
Rok wydania:
2010
Numer serii:
000352734
Ilość stron:
352
Waga:
0.53 kg
Wymiary:
22.86 x 15.24 x 2.06
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

From the reviews:

"There is no doubt that this volume is a very remarkable piece of work...Its appearance represents a landmark in the mathematical literature."

-Bulletin of the London Mathematical Society

"This book is an important contribution to the field and can be recommended especially to mathematicians working in the field."

-EMS Newsletter

"The present book gives a very efficient presentation of an important part of quantum group theory. It is a valuable contribution to the literature."

-Mededelingen van het Wiskundig

"Lusztig's book is very well written and seems to be flawless...Obviously, this will be the standard reference book for the material presented and anyone interested in the Drinfeld-Jimbo algebras will have to study it very carefully."

-ZAA

"[T]his book is much more than an 'introduction to quantum groups.' It contains a wealth of material. In addition to the many important results (of which several are new-at least in the generality presented here), there are plenty of useful calculations (commutator formulas, generalized quantum Serre relations, etc.)."

-Zentralblatt MATH

"George Lusztig lays out the large scale structure of the discussion that follows in the 348 pages of his Introduction to Quantum Groups. ... A significant and important work. ... it's terrific stuff, elegant and deep, and Lusztig presents it very well indeed, of course." (Michael Berg, The Mathematical Association of America, January, 2011)

THE DRINFELD JIMBO ALGERBRA U.- The Algebra f.- Weyl Group, Root Datum.- The Algebra U.- The Quasi--Matrix.- The Symmetries of an Integrable U-Module.- Complete Reducibility Theorems.- Higher Order Quantum Serre Relations.- GEOMETRIC REALIZATION OF F.- Review of the Theory of Perverse Sheaves.- Quivers and Perverse Sheaves.- Fourier-Deligne Transform.- Periodic Functors.- Quivers with Automorphisms.- The Algebras and k.- The Signed Basis of f.- KASHIWARAS OPERATIONS AND APPLICATIONS.- The Algebra .- Kashiwara’s Operators in Rank 1.- Applications.- Study of the Operators .- Inner Product on .- Bases at ?.- Cartan Data of Finite Type.- Positivity of the Action of Fi, Ei in the Simply-Laced Case.- CANONICAL BASIS OF U.- The Algebra .- Canonical Bases in Certain Tensor Products.- The Canonical Basis .- Inner Product on .- Based Modules.- Bases for Coinvariants and Cyclic Permutations.- A Refinement of the Peter-Weyl Theorem.- The Canonical Topological Basis of .- CHANGE OF RINGS.- The Algebra .- Commutativity Isomorphism.- Relation with Kac-Moody Lie Algebras.- Gaussian Binomial Coefficients at Roots of 1.- The Quantum Frobenius Homomorphism.- The Algebras .- BRAID GROUP ACTION.- The Symmetries of U.- Symmetries and Inner Product on f.- Braid Group Relations.- Symmetries and U+.- Integrality Properties of the Symmetries.- The ADE Case.

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. It is shown that these algebras have natural integral forms that can be specialized at roots of 1 and yield new objects, which include quantum versions of the semi-simple groups over fields of positive characteristic. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical bases having rather remarkable properties. This book contains an extensive treatment of the theory of canonical bases in the framework of perverse sheaves. The theory developed in the book includes the case of quantum affine enveloping algebras and, more generally, the quantum analogs of the Kac–Moody Lie algebras.

Introduction to Quantum Groups will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists, theoretical physicists, and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the work may also be used as a textbook.

****************************************

There is no doubt that this volume is a very remarkable piece of work...Its appearance represents a landmark in the mathematical literature.

—Bulletin of the London Mathematical Society

This book is an important contribution to the field and can be recommended especially to mathematicians working in the field.

—EMS Newsletter

The present book gives a very efficient presentation of an important part of quantum group theory. It is a valuable contribution to the literature.

—Mededelingen van het Wiskundig

Lusztig's book is very well written and seems to be flawless...Obviously, this will be the standard reference book for the material presented and anyone interested in the Drinfeld–Jimbo algebras will have to study it very carefully.

—ZAA

[T]his book is much more than an 'introduction to quantum groups.' It contains a wealth of material. In addition to the many important results (of which several are new–at least in the generality presented here), there are plenty of useful calculations (commutator formulas, generalized quantum Serre relations, etc.).

—Zentralblatt MATH

Lusztig, George Lusztig is Professor of Mathematics at the Massach... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia