• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Introduction to Homotopy Theory » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Introduction to Homotopy Theory

ISBN-13: 9781441973283 / Angielski / Miękka / 2011 / 344 str.

Martin Arkowitz
Introduction to Homotopy Theory Martin Arkowitz 9781441973283 Not Avail - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Introduction to Homotopy Theory

ISBN-13: 9781441973283 / Angielski / Miękka / 2011 / 344 str.

Martin Arkowitz
cena 301,89
(netto: 287,51 VAT:  5%)

Najniższa cena z 30 dni: 289,13
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: - Basic Homotopy;
- H-spaces and co-H-spaces;
- Fibrations and Cofibrations;
- Exact sequences of homotopy sets, actions, and coactions;
- Homotopy pushouts and pullbacks;
- Classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead;
- Homotopy Sets;
- Homotopy and homology decompositions of spaces and maps; and
- Obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. This approach provides a unifying motif, clarifies many concepts, and reduces the amount of repetitious material. The subject matter is treated carefully with attention to detail, motivation is given for many results, there are several illustrations, and there are a large number of exercises of varying degrees of difficulty. It is assumed that the reader has had some exposure to the rudiments of homology theory and fundamental group theory. These topics are discussed in the appendices. The book can be used as a text for the second semester of an algebraic topology course. The intended audience would be advanced undergraduates or graduate students. The book could also be used by anyone with a little background in topology who wishes to learn some homotopy theory.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Topologia
Mathematics > Geometria - Algebraiczna
Mathematics > Algebra - General
Wydawca:
Not Avail
Język:
Angielski
ISBN-13:
9781441973283
Rok wydania:
2011
Numer serii:
000024642
Ilość stron:
344
Waga:
0.50 kg
Wymiary:
23.39 x 15.6 x 1.91
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Podręcznik

From the reviews:

"Homotopy theory constitutes a branch of algebraic topology, a subject whose modus operandi, enshrined in its very name, consists of attaching algebraic objects to topological spaces for the sake of reducing topological problems to simpler algebraic ones. ... Summing Up: Recommended. Upper-division undergraduates and above." (D. V. Feldman, Choice, Vol. 49 (7), March, 2012)

"The book under review is an excellent addition to the beginning graduate level offerings in homotopy theory. A distinguishing feature is a thematic focus on Eckmann-Hilton duality. ... this book offers an attractive option for a course or self-study, fitting a niche between the introductory texts of Munkres, Massey and Thatcher and the comprehensive treatments of homotopy theory by Spanier and Whitehead." (Samuel B. Smith, Mathematical Reviews, Issue 2012 f)

"Arkowitz' Introduction to Homotopy Theory is presumably aimed at an audience of graduate students who have already been exposed to the basics of algebraic topology ... . Introduction to Homotopy Theory is presented in nine chapters, taking the reader from 'basic homotopy' to obstruction theory with a lot of marvelous material in between ... . Arkowitz' book is a valuable text and promises to figure prominently in the education of many young topologists." (Michael Berg, The Mathematical Association of America, October, 2011)

1 Basic Homotopy.- 1.1 Introduction.- 1.2 Spaces, Maps, Products and Wedges.- 1.3 Homotopy I.- 1.4 Homotopy II.- 1.5 CW Complexes.- 1.6 Why Study Homotopy Theory?.- Exercises.- 2 H-Spaces and Co-H-Spaces.- 2.1 Introduction.- 2.2. H-Spaces and Co-H-Spaces.- 2.3 Loop Spaces and Suspensions.- 2.4 Homotopy Groups I.- 2.5 Moore Spaces and Eilenberg-Mac Lane Spaces.- 2.6 Eckmann-Hilton Duality I.- Exercises.- 3 Cofibrations and Fibrations.- 3.1 Introduction.- 3.2 Cofibrations.- 3.3 Fibrations.- 3.4 Examples of Fiber Bundles.- 3.5 Replacing a Map by a Cofiber or Fiber Map.- Exercises.- 4 Exact Sequences.- 4.1 Introduction.- 4.2 The Coexact and Exact Sequence of a Map.- 4.3 Actions and Coactions.- 4.4 Operations.- 4.5 Homotopy Groups II.- Exercises.- 5 Applications of Exactness.- 5.1 Introduction.- 5.2 Universal Coefficient Theorems.- 5.3 Homotopical Cohomology Groups.- 5.4 Applications to Fiber and Cofiber Sequences.- 5.5 The Operation of the Fundamental Group.- 5.6 Calculation of Homotopy Groups.-Exercises.- 6 Homotopy Pushouts and Pullbacks.- 6.1 Introduction.- 6.2 Homotopy Pushouts and Pullbacks I.- 6.3 Homotopy Pushouts and Pullbacks II.- 6.4 Theorems of Serre, Hurewicz and Blakers-Massey.- 6.5 Eckmann-Hilton Duality II.- Exercises.- 7 Homotopy and Homology Decompositions.- 7.1 Introduction.- 7.2 Homotopy Decompositions of Spaces.- 7.3 Homology Decompositions of Spaces.- 7.4 Homotopy and Homology Decompositions of Maps.- Exercises.- 8 Homotopy Sets.- 8.1 Introduction.- 8.2 The Set [X, Y].- 8.3 Category.- 8.4 Loop and Group Structure in [X, Y].-Exercises.- 9 Obstruction Theory.- 9.1 Introduction.- 9.2 Obstructions Using Homotopy Decompositions.- 9.3 Lifts and Extensions.- 9.4 Obstruction Miscellany.- Exercises.- A Point-Set Topology.- B The Fundamental Group.- C Homology and Cohomology.- D Homotopy Groups of the n-Sphere.- E Homotopy Pushouts and Pullbacks.- F Categories and Functors.- Hints to Some of the Exercises.- References.- Index.-

Martin Arkowitz is currently a professor of mathematics at Dartmouth College. He received his Ph.D. in mathematics at Cornell University. His area of expertise is algebraic topology.

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows:

• Basic homotopy;
• H-spaces and co-H-spaces;
• Fibrations and cofibrations;
• Exact sequences of homotopy sets, actions, and coactions;
• Homotopy pushouts and pullbacks;
• Classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead;
• Homotopy sets;
• Homotopy and homology decompositions of spaces and maps; and
• Obstruction theory.

The underlying theme of the entire book is the Eckmann-Hilton duality theory. This approach provides a unifying motif, clarifies many concepts, and reduces the amount of repetitious material. The subject matter is treated carefully with attention to detail, motivation is given for many results, there are several illustrations, and there are a large number of exercises of varying degrees of difficulty.

It is assumed that the reader has had some exposure to the rudiments of homology theory and fundamental group theory; these topics are discussed in the appendices. The book can be used as a text for the second semester of an algebraic topology course. The intended audience of this book is advanced undergraduate or graduate students. The book could also be used by anyone with a little background in topology who wishes to learn some homotopy theory.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia