'Introduction to Applied Linear Algebra fills a very important role that has been sorely missed so far in the plethora of other textbooks on the topic, which are filled with discussions of nullspaces, rank, complex eigenvalues and other concepts, and by way of 'examples', typically show toy problems. In contrast, this unique book focuses on two concepts only, linear independence and QR factorization, and instead insists on the crucial activity of modeling, showing via many well-thought out practical examples how a deceptively simple method such as least-squares is really empowering. A must-read introduction for any student in data science, and beyond!' Laurent El Ghaoui, University of California, Berkeley
Part I. Vectors: 1. Vectors; 2. Linear functions; 3. Norm and distance; 4. Clustering; 5. Linear independence; Part II. Matrices: 6. Matrices; 7. Matrix examples; 8. Linear equations; 9. Linear dynamical systems; 10. Matrix multiplication; 11. Matrix inverses; Part III. Least Squares: 12. Least squares; 13. Least squares data fitting; 14. Least squares classification; 15. Multi-objective least squares; 16. Constrained least squares; 17. Constrained least squares applications; 18. Nonlinear least squares; 19. Constrained nonlinear least squares; Appendix A; Appendix B; Appendix C; Appendix D; Index.
Boyd, Stephen Stephen Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering at Stanford University,California, with courtesy appointments in the Department of Computer Science, and the Department of Management Science and Engineering. He is the co-author of Convex Optimization (Cambridge, 2004), written with Lieven Vandenberghe.
Vandenberghe, Lieven Lieven Vandenberghe is a Professor in the Electrical and Computer Engineering Department at the University of California, Los Angeles, with a joint appointment in the Department of Mathematics. He is the co-author, with Stephen Boyd, of Convex Optimization (Cambridge, 2004).