• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Integrated Computational Life Cycle Engineering for Traction Batteries » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Integrated Computational Life Cycle Engineering for Traction Batteries

ISBN-13: 9783030829360 / Angielski / Miękka / 2022

Felipe Cerdas
Integrated Computational Life Cycle Engineering for Traction Batteries Felipe Cerdas 9783030829360 Springer International Publishing - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Integrated Computational Life Cycle Engineering for Traction Batteries

ISBN-13: 9783030829360 / Angielski / Miękka / 2022

Felipe Cerdas
cena 564,88 zł
(netto: 537,98 VAT:  5%)

Najniższa cena z 30 dni: 539,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

The environmental burden caused by private transportation represents a significant challenge towards sustainability. Electric vehicles are considered a key technology to reduce the environmental impact caused by the mobility sector. However, the global adoption of electromobility implies shift and diversification of the environmental impacts caused by the transportation sector mainly driven by the production of the battery system. Modeling the life cycle environmental impacts of traction batteries is a time demanding and interdisciplinary task as it involves a high variability and requires an in-depth knowledge of the product system under analysis. To face these challenges, an Integrated Computational Life Cycle Engineering ICLCE framework for EVs has been developed. The ICLCE framework described aims at supporting fast and comprehensive modelling of complex foreground systems in the electromobility field and their interaction with diverse backgrounds and partial contexts.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Industrial Engineering
Science > Earth Sciences - General
Computers > Design, Graphics & Media - CAD-CAM
Wydawca:
Springer International Publishing
Seria wydawnicza:
Sustainable Production, Life Cycle Engineering and Managemen
Język:
Angielski
ISBN-13:
9783030829360
Rok wydania:
2022
Waga:
0.33 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

Summary............................................................................................................................. 3

Acronyms............................................................................................................................ 4

Contents.............................................................................................................................. 5

Chapter 1: Background and context........................................................................... 8

1.              Towards a more sustainable private transportation system ........................... 8

2.              The risk of problem shifting ............................................................................. 10

3.              Complex systems require tools and methodologies ..................................... 11

4.              Objective, context and structure of this work................................................. 13

References......................................................................................................................... 15

Chapter 2: LCE and electromobility........................................................................ 18

5.              Environmental sustainability and Life Cycle Engineering........................... 18

5.1.              Environmental Impacts of products.............................................................. 20

5.2.              Life Cycle Assessment.................................................................................... 22

5.3.              Life Cycle Engineering .................................................................................. 26

Definitions and scope...................................................................................... 26

Methods and Tools for LCE........................................................................... 27

LCA- based methods and tools for LCE...................................................... 29

2.              Technical aspects of electric vehicles and lithium-ion traction batteries.. 32

2.1.              Electric vehicles: definitions and classification.......................................... 32

2.2.              Electric vehicle energy demand..................................................................... 35

2.3.              Electric vehicle main components................................................................. 39

2.4.              Lithium-ion traction batteries......................................................................... 42

Working principles and main cell components.......................................... 42

Battery design and manufacturing................................................................ 47

Battery degradation......................................................................................... 52

Battery Recycling............................................................................................ 52

3.              Life Cycle Engineering of battery electric vehicles...................................... 54

3.1.              LCA of electromobility................................................................................... 54

Raw materials extraction, production and assembly................................. 55

Electric vehicle usage stage........................................................................... 56

Vehicle End-of-life.......................................................................................... 56

3.2.              Modelling complexity..................................................................................... 57

References......................................................................................................................... 59

Chapter 3: State of Research...................................................................................... 68

Review on LCE modelling and assessment approaches for electromobility.. 68

1.       Selection of Approaches and Definition of Evaluation Criteria...................... 68

1.1.              Selection of Approaches................................................................................. 68

1.2.              Derivation of evaluation criteria.................................................................... 72

2.       Description and Evaluation of selected approaches........................................... 75

2.1.              State of the research on the life cycle environmental assessment of electric vehicles and traction batteries 75

2.2.              State of the research on selected modelling approaches and computational frameworks for EVs and traction batteries              84

2.3.              Contributions outside the field of electromobility...................................... 94

2.4.              Evaluation of approaches and summary of findings.................................. 95

References......................................................................................................................... 99

Chapter 4: Concept Development........................................................................... 104

Integrated Computational Life Cycle Engineering for traction batteries... 104

1.              Systems perspective in ICLCE....................................................................... 104

2.               Synthesis of needs, objectives and requirements........................................ 106

2.1.              Synthesis of needs.......................................................................................... 107

2.2.              Analysis of requirements.............................................................................. 108

3.              Framework and general modelling scheme.................................................. 113

3.1.              Framework development and reference architecture............................... 113

3.2.              General modelling scheme in ICLCE........................................................ 125

3.3.              Foreground System modelling..................................................................... 130

3.4.              Background System modelling.................................................................... 134

3.5.              Spatial Context Modelling........................................................................... 136

3.6.              Product system modelling and Assessment.............................................. 137

4.              Prototypical implementation of an ICLCE for traction batteries.............. 141

References....................................................................................................................... 146

Chapter 5: Exemplary application.......................................................................... 149

Analysis of variability in the LCE of batteries for electric vehicles............... 149

5.              Introduction........................................................................................................ 149

5.1.              Implemented models in the foreground system layer.............................. 151

5.2.              Implemented models in the spatial context layer..................................... 162

2.              Case study........................................................................................................... 165

2.1.              Complexity of cradle to gate LCIA results of traction batteries ........... 165

2.2.              Complexity of LCIA results of EVs usage stage .................................... 174

References....................................................................................................................... 181

Chapter 6: Summary, critical review and outlook............................................. 184

3.              Summary............................................................................................................. 184

4.              Critical review................................................................................................... 185

5.              Outlook............................................................................................................... 188

References....................................................................................................................... 190

Appendix........................................................................................................................ 192

 

The environmental burden caused by private transportation represents a significant challenge towards sustainability. Electric vehicles are considered a key technology to reduce the environmental impact caused by the mobility sector. However, the global adoption of electromobility implies shift and diversification of the environmental impacts caused by the transportation sector mainly driven by the production of the battery system. Modeling the life cycle environmental impacts of traction batteries is a time demanding and interdisciplinary task as it involves a high variability and requires an in-depth knowledge of the product system under analysis. To face these challenges, an Integrated Computational Life Cycle Engineering ICLCE framework for EVs has been developed. The ICLCE framework described aims at supporting fast and comprehensive modelling of complex foreground systems in the electromobility field and their interaction with diverse backgrounds and partial contexts.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia