ISBN-13: 9783030829339 / Angielski / Twarda / 2021 / 170 str.
ISBN-13: 9783030829339 / Angielski / Twarda / 2021 / 170 str.
Summary............................................................................................................................. 3
Acronyms............................................................................................................................ 4
Contents.............................................................................................................................. 5
Chapter 1: Background and context........................................................................... 8
1. Towards a more sustainable private transportation system ........................... 8
2. The risk of problem shifting ............................................................................. 10
3. Complex systems require tools and methodologies ..................................... 11
4. Objective, context and structure of this work................................................. 13References......................................................................................................................... 15
Chapter 2: LCE and electromobility........................................................................ 18
5. Environmental sustainability and Life Cycle Engineering........................... 18
5.1. Environmental Impacts of products.............................................................. 20
5.2. Life Cycle Assessment.................................................................................... 22
5.3. Life Cycle Engineering .................................................................................. 26
Definitions and scope...................................................................................... 26
Methods and Tools for LCE........................................................................... 27
LCA- based methods and tools for LCE...................................................... 29
2. Technical aspects of electric vehicles and lithium-ion traction batteries.. 32
2.1. Electric vehicles: definitions and classification.......................................... 32
2.2. Electric vehicle energy demand..................................................................... 35
2.3. Electric vehicle main components................................................................. 39
2.4. Lithium-ion traction batteries......................................................................... 42
Working principles and main cell components.......................................... 42
Battery design and manufacturing................................................................ 47
Battery degradation......................................................................................... 52
Battery Recycling............................................................................................ 52
3. Life Cycle Engineering of battery electric vehicles...................................... 54
3.1. LCA of electromobility................................................................................... 54
Raw materials extraction, production and assembly................................. 55Electric vehicle usage stage........................................................................... 56
Vehicle End-of-life.......................................................................................... 56
3.2. Modelling complexity..................................................................................... 57
References......................................................................................................................... 59
Chapter 3: State of Research...................................................................................... 68
Review on LCE modelling and assessment approaches for electromobility.. 68
1. Selection of Approaches and Definition of Evaluation Criteria...................... 68
1.1. Selection of Approaches................................................................................. 681.2. Derivation of evaluation criteria.................................................................... 72
2. Description and Evaluation of selected approaches........................................... 75
2.1. State of the research on the life cycle environmental assessment of electric vehicles and traction batteries 75
2.2. State of the research on selected modelling approaches and computational frameworks for EVs and traction batteries 84
2.3. Contributions outside the field of electromobility...................................... 94
2.4. Evaluation of approaches and summary of findings.................................. 95
References......................................................................................................................... 99
Chapter 4: Concept Development........................................................................... 104
Integrated Computational Life Cycle Engineering for traction batteries... 104
1. Systems perspective in ICLCE....................................................................... 104
2. Synthesis of needs, objectives and requirements........................................ 106
2.1. Synthesis of needs.......................................................................................... 107
2.2. Analysis of requirements.............................................................................. 108
3. Framework and general modelling scheme.................................................. 113
3.1. Framework development and reference architecture............................... 113
3.2. General modelling scheme in ICLCE........................................................ 125
3.3. Foreground System modelling..................................................................... 1303.4. Background System modelling.................................................................... 134
3.5. Spatial Context Modelling........................................................................... 136
3.6. Product system modelling and Assessment.............................................. 137
4. Prototypical implementation of an ICLCE for traction batteries.............. 141
References....................................................................................................................... 146
Chapter 5: Exemplary application.......................................................................... 149
Analysis of variability in the LCE of batteries for electric vehicles............... 149
5. Introduction........................................................................................................ 149
5.1. Implemented models in the foreground system layer.............................. 151
5.2. Implemented models in the spatial context layer..................................... 162
2. Case study........................................................................................................... 165
2.1. Complexity of cradle to gate LCIA results of traction batteries ........... 165
2.2. Complexity of LCIA results of EVs usage stage .................................... 174
References....................................................................................................................... 181Chapter 6: Summary, critical review and outlook............................................. 184
3. Summary............................................................................................................. 184
4. Critical review................................................................................................... 1855. Outlook............................................................................................................... 188
References....................................................................................................................... 190
Appendix........................................................................................................................ 192
The environmental burden caused by private transportation represents a significant challenge towards sustainability. Electric vehicles are considered a key technology to reduce the environmental impact caused by the mobility sector. However, the global adoption of electromobility implies shift and diversification of the environmental impacts caused by the transportation sector mainly driven by the production of the battery system. Modeling the life cycle environmental impacts of traction batteries is a time demanding and interdisciplinary task as it involves a high variability and requires an in-depth knowledge of the product system under analysis. To face these challenges, an Integrated Computational Life Cycle Engineering ICLCE framework for EVs has been developed. The ICLCE framework described aims at supporting fast and comprehensive modelling of complex foreground systems in the electromobility field and their interaction with diverse backgrounds and partial contexts.
1997-2025 DolnySlask.com Agencja Internetowa