• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Integraltafel: Zweiter Teil Bestimmte Integrale » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Integraltafel: Zweiter Teil Bestimmte Integrale

ISBN-13: 9783211811870 / Niemiecki / Twarda / 1973 / 204 str.

Wolfgang Grbner; Nikolaus Hofreiter; Wolfgang Grabner
Integraltafel: Zweiter Teil Bestimmte Integrale Wolfgang Grbner Nikolaus Hofreiter Wolfgang Grabner 9783211811870 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Integraltafel: Zweiter Teil Bestimmte Integrale

ISBN-13: 9783211811870 / Niemiecki / Twarda / 1973 / 204 str.

Wolfgang Grbner; Nikolaus Hofreiter; Wolfgang Grabner
cena 206,40
(netto: 196,57 VAT:  5%)

Najniższa cena z 30 dni: 198,14
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Der zweite Teil der Integraltafel, welcher die bestimmten Integrale umfaBt, gleicht in seinem Aufbau dem ersten Teil. Er enthaJ.t vor allem solche Integrale, die im ersten Teil nicht vorkommen, weil die betreffenden Integralfunktionen nicht naher bekannt oder nicht tabelliert sind, so daB nur bei speziellen Grenzen bekannte Zahlwerte oder bekannte Parameterfunktionen auftreten. Um jedoch praktischen Bediirfnissen entgegenzukommen, wurden auch viele Integrale, die schon im ersten Teil verzeichnet sind, ftir spezielle, besonders haufig auftretende Grenzen berechnet und in den zweiten Teil mit aufgenommen. Noch mehr als im ersten war im zweiten Teil die Frage der richtigen Abgrenzung des Stoffes schwer zu lOsen; es ist kaum moglich, hier allen Ansprtichen gerecht zu werden, ohne den Umfang der Tafel tiber Gebtihr anschwellen zu lassen. Wir haben uns daher in allen Fallen bemtiht, durch Einftihrung von Parametem moglichst viele gleichartige Integrale zusammenzufassen; das erleichtert zugleich die tJbersicht, zieht andererseits aber die Unbequemlichkeit mit sich, daB der gerade ge suchte Integralwert nicht unmittelbar abgelesen werden kann, sondem erst durch Einsetzen der passenden Parameterwerte ermittelt werden muB. In einzelnen wichtigeren FaJ.len haben wir jedoch zur allgemeinen Formel noch eine Reihe von speziellen fiir besondere Parameterwerte hinzugefiigt.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Matematyka
Wydawca:
Springer
Język:
Niemiecki
ISBN-13:
9783211811870
Rok wydania:
1973
Wydanie:
5. Aufl. 1973
Ilość stron:
204
Oprawa:
Twarda
Wolumenów:
01

011. Symbole und Bezeichnungen.- 021. Methoden zur Berechnung bestimmter Integrale.- 031. Allgemeine Integralformeln.- 1. Abschnitt. Rationale Integranden.- 111. Potenzen von ?x + ß.- 121. Potenzprodukte von mehreren linearen Ausdrücken.- 131. Potenzen eines quadratischen Ausdrucks.- 141. Potenzprodukte von linearen und quadratischen Ausdrücken.- 151. Potenzprodukte von x und axn + b.- 161. Beliebige Potenzprodukte.- 17. Orthogonale Polynome.- 171. Legendresche Polynome für das Intervall –l? x ?l.- 172. Legendresche Polynome für das Intervall a? x ?b.- 173. Jacobische oder hypergeometrische Polynome.- 174. Tschebischeffsche Polynome.- 175. Assoziierte Legendresche Funktionen.- 176. Laguerresche Polynome.- 177. Hermitesche Polynome.- 2. Abschnitt. Algebraisch irrationale Integranden.- 211. Rationale Funktionen von x und $$ \sqrt[n]{{ax + b}}$$..- 212. Rationale Funktionen von $$x,\sqrt {ax + b} ,\sqrt {cx + d} $$.- 213. Rationale Funktionen von x, $$\sqrt {a{x^2} + 2bx + c} $$.- 214. Spezialfall: Rationale Funktionen von x und $$\sqrt {{x^2} + {a^2}} $$.- 215. Spezialfall: Rationale Funktionen von x und $$\sqrt {{x^2} - {a^2}} $$.- 216. Spezialfall: Rationale Funktionen von x und $$\sqrt {{a^2} - {x^2}} $$.- 221. Elliptische Integrale in der Legendreschen kanonischen Form.- 222. Elliptische Integrale in der Weierstraßschen kanonischen Form.- 223. Rationale Funktionen von x und $$\sqrt {{a^0}{x^4} + 4{x^3} + 6{x^2} + 4x + }$$.- 3. Abschnitt. Elementare transzendente Integranden.- 311. Integrale der Form $$\int {R\left( {{e^{\lambda x}},{e^{\mu x}}, \ldots } \right)} dx$$.- 312. Integrale der Form $$\int {{e^{ - sx}}f\left( x \right)} dx$$ (Laplacetransformation).- 313. Integrale der Form $$ \int {R\left( {x,{e^{\lambda x}}} \right)} dx$$.- 314. Integrale der Form $$\int {R\left( {x,{e^{f\left( x \right)}}} \right)} dx$$.- 321. Integrale der Form $$\int {f\left( {\log x} \right)} dx$$.- 322. Integrale der Form Integrale von der Form $$\int {\log \left[ {g\left( x \right)} \right]} dx$$.- 323. Der Eulersche Dilogarithmus und seine Verallgemeinerungen.- 324. Integrale der Form $$\int {f\left( x \right)} {\log ^n}xdx$$.- A. f(x) rational.- B. f(x) algebraisch irrational.- C. f(x) transzendent.- 325. Integrale der Form $$\int {f\left( x \right)} \log \left[ {g\left( x \right)} \right]dx$$.- 326. Integrale der Form $$\int {F\left( {x,\log \left[ {f\left( x \right)} \right]} \right)} dx$$.- 327. Exponentialintegral, Integrallogarithmus, Integralsinus, Integralkosinus und verwandte Funktionen.- 331. Integrale der Form $$\int {f\left( {\sin x,\cos x} \right)dx} $$.- A. Allgemeine Formeln.- B. Integrale der Form $$\int {f{{\sin }^{\,m}}x,\,{{\cos }^n}x\,dx} $$.- C. Integrand rational gebrochen.- D. Allgemeine Integranden.- 332. Integrale der Form $$\int {f\left( {\sin ax,\cos bx, \ldots } \right)dx} $$.- 333. Integrale der Form $$\int {f\left( {x,\sin ax,\cos bx} \right)dx} $$.- A. Integrale der Form $$\int {{x^k}{{\sin }^m}ax,\,{{\cos }^n}\,bx\,dx} $$.- B. Allgemeine Integranden.- 334. Integrale der Form $$\int {F\left( {x,\sin f\left( x \right),\cos g\left( x \right), \ldots } \right)dx} $$.- A. f(x), g(x) rational.- B. Allgemeine Integranden.- 335. Integrale der Form $$\int {F\left( {{e^},\sin bx,\cos cx} \right)dx} $$.- 336. Integrale der Form $$\int {F\left( {x,{e^},\sin bx,\cos cx} \right)dx} $$.- 337. Integrale der Form $$\int {F\left( {x,{e^{f\left( x \right)}},\sin g\left( x \right),\cos \,h\left( x \right)} \right)dx} $$.- 338. Integrale der Form $$\int {F\left( {x,\log f\left( x \right),\sin g\left( x \right),\cos \,h\left( x \right)} \right)dx} $$.- 341. Integrale der Form $$\int {F\left( {x,\,Arc\sin x,\,Arc\cos x} \right)} dx$$.- 342. Integrale der Form $$\int {F\left( {x,\,Arc\,tg\,x,\,Arc\,\operatorname tg\,x} \right)dx} $$ dx.- 351. Integrale der Form $$\int {R\left( {{e^{\lambda x}},\,\mathfrak\mathfrak\mathfrak\,ax,\,\mathfrak\mathfrak\mathfrak\,bx} \right)dx} $$.- 352. Integrale der Form $$\int {R\left( {x,\,\mathfrak\mathfrak\mathfrak\,ax,\,\mathfrak\mathfrak\mathfrak\,bx} \right)dx} $$.- 353. Integrale der Form $$\int {F\left[ {f\left( x \right),\,\mathfrak\mathfrak\mathfrak\,ax,\,\mathfrak\mathfrak\mathfrak\,bx} \right]dx} $$.- 361. Integrale von Area-Funktionen.- A. $$\mathfrak\mathfrak\,\mathfrak\mathfrak\mathfrak\,x$$.- B. $$\mathfrak\mathfrak\,\mathfrak\mathfrak\mathfrak\,x$$.- C. $$\mathfrak\mathfrak\,\mathfrak\mathfrak\,x$$.- D. $$\mathfrak\mathfrak\,\mathfrak\mathfrak\mathfrak\,x$$.- 371. Grenzwerte: $$\mathop {\lim }\limits_{k \to \infty } \int {f\left( {k,x} \right)} dx$$.- 4. Abschnitt. Eulersche Integrale.- 411. Gammafunktion.- 421. Potenzprodukte von linearen Ausdrücken mit allgemeinen Exponenten.- 431. Potenzprodukte von zweigliedrigen Ausdrücken mit allgemeinen Exponenten.- 441. Potenzprodukte von mehrgliedrigen Ausdrücken mit allgemeinen Exponenten.- 5. Abschnitt. Integrale von Zylinderfunktionen.- 511. Zylinderfunktionen (Besselsche Funktionen).- 512. Modifizierte Zylinderfunktionen (Besselsche Funktionen mit rein imaginärem Argument).- 513. Verwandte Funktionen.- 521. Integrale der Form $$\int {F\left[ {x,\,{\mathfrak_v}\,\left( x \right)} \right]} \,dx$$.- 531. Integrale der Form $$\int {F\left[ {x,\,e{\,^x},\log x,{\mathfrak_v}\,\left( x \right)} \right]} \,dx$$.- 541. Integrale der Form $$\int {F\left[ {x,\,\sin \,x,\cos x,{\mathfrak_v}\,\left( x \right)} \right]} \,dx$$.- 551. Integrale der Form $$\int {F\left[ {x,\,{\mathfrak_v}\,\left( x \right),\mathfrak\mu \,\left( x \right)} \right]} \,dx$$.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia