• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Instance Selection and Construction for Data Mining » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Instance Selection and Construction for Data Mining

ISBN-13: 9780792372097 / Angielski / Twarda / 2001 / 416 str.

Huan Liu; Liu Huan Liu; Hiroshi Motoda
Instance Selection and Construction for Data Mining Huan Liu Liu Hua Hiroshi Motoda 9780792372097 Kluwer Academic Publishers - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Instance Selection and Construction for Data Mining

ISBN-13: 9780792372097 / Angielski / Twarda / 2001 / 416 str.

Huan Liu; Liu Huan Liu; Hiroshi Motoda
cena 605,23 zł
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 578,30 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency.
One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc.
Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Computer Science
Computers > System Administration - Storage & Retrieval
Computers > Artificial Intelligence - General
Wydawca:
Kluwer Academic Publishers
Seria wydawnicza:
Mathematical Modelling--Theory and Applications
Język:
Angielski
ISBN-13:
9780792372097
Rok wydania:
2001
Wydanie:
2001
Numer serii:
000122177
Ilość stron:
416
Waga:
1.78 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

Foreword; R.S. Michalski. Preface. Acknowledgments. Contributing Authors. Part I: Background and Foundation. 1. Data Reduction via Instance Selection; H. Liu, H. Motoda. 2. Sampling: Knowing Whole from its Part; B. Gu, et al. 3. A Unifying View on Instance Selection; T. Reinartz. Part II: Instance Selection Methods. 4. Competence Guided Instance Selection for Case-Based Reasoning; B. Smyth, E. McKenna. 5. Identifying Competence-Critical Instances for Instance-Based Learners; H. Brighton, C. Mellish. 6. Genetic-Algorithm-Based Instance and Feature Selection; H. Ishibuchi, et al. 7. The Landmark Model: An Instance Selection Method for Time Series Data; C.-S. Perng, et al. Part III: Use of Sampling Methods. 8. Adaptive Sampling Methods for Scaling Up Knowledge Discovery Algorithms; C. Domingo, et al. 9. Progressive Sampling; F. Provost, et al. 10. Sampling Strategy for Building Decision Trees from Very Large Databases Comprising Many Continuous Attributes; J.-H. Chauchat, R. Rakotomalala. 11. Incremental Classification Using Tree-Based Sampling for Large Data; H. Yoon, et al. Part IV: Unconventional Methods. 12. Instance Construction via Likelihood-Based Data Squashing; D. Madigan, et al. 13. Learning via Prototype Generation and Filtering; W. Lam, et al. 14. Instance Selection Based on Hypertuples; >H. Wang. 15. KBIS: Using Domain Knowledge to Guide Instance Selection; P. Wright, J. Hodges. Part V: Instance Selection in Model Combination. 16.Instance Sampling for Boosted and Standalone Nearest Neighbor Classifiers; D.B. Skalak. 17. Prototype Selection Using Boosted Nearest-Neighbors; R. Nock, M. Sebban. 18. DAGGER: Instance Selection for Combining Multiple Models Learnt from Disjoint Subsets; W. Davies, P. Edwards. Part VI: Applications of Instance Selection. 19. Using Genetic Algorithms for Training Data Selection in RBF Networks; C.R. Reeves, D.R. Bush. 20. An Active Learning Formulation for Instance Selection with Applications to Object Detection; K.-K. Sung, P. Niyogi. 21. Filtering Noisy Instances and Outliers; D. Gamberger, N. Lavrač. 22. Instance Selection Based on Support Vector Machine; S. Sugaya, et al. Index.

Liu, Huan Huan Liu is a Professor of Computer Science and En... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia