ISBN-13: 9783642688874 / Angielski / Miękka / 2011 / 450 str.
ISBN-13: 9783642688874 / Angielski / Miękka / 2011 / 450 str.
The first book bearing the title of this volume, Inorganic Plant Nutrition, was written by D. R. HOAGLAND of the University of California at Berkeley. As indicated by its extended title, Lectures on the Inorganic Nutrition of Plants, it is a collection of lectures - the JOHN M. PRATHER lectures, which he was invited in 1942 to give. at Harvard University and presented there between April 10 and 23 of that year - 41 years before the publication of the present volume. They were not "originally intended for publication" but fortunately HOAGLAND was persuaded to publish them; the book appeared in 1944. It might at first blush seem inappropriate to draw comparisons between a book embodying a set of lectures by a single author and an encyclopedic volume with no less than 37 contributors. But HOAGLAND'S book was a compre hensive account of the state of this science in his time, as the present volume is for ours. It was then still possible for one person, at least for a person of HOAGLAND'S intellectual breadth and catholicity of interests, to encompass many major areas of the entire field, from the soil substrate to the metabolic roles of nitrogen, potassium, and other nutrients, and from basic scientific topics to the application of plant nutritional research in solving problems encountered in the field."
A.- I. General Chapters of Inorganic Plant Nutrition.- I.1 General Introduction to the Mineral Nutrition of Plants (With 11 Figures).- 1 Introduction and Historical Résumé.- 1.1 Essential Mineral Elements — Plant Nutrients.- 1.2 Function of Essential Mineral Elements.- 1.3 Beneficial Mineral Elements.- 1.4 Recent Developments.- 1.4.1 Calcium.- 1.4.2 Potassium.- 1.4.3 Phosphorus.- 1.4.4 Nitrogen.- 1.4.5 Copper.- 1.4.6 Chlorine.- 2 Uptake and Long-Distance Transport of Mineral Elements.- 2.1 Ion Concentration at the Root Surface, Role of the “Rhizosphere”.- 2.2 Long-Distance Transport in the Xylem.- 2.2.1 From the Roots to the Shoot.- 2.2.2 Into Fruits, Seeds and Storage Organs.- 2.2.3 Retranslocation of Mineral Elements from Leaves.- 3 Calcium Nutrition of Higher Plants.- 3.1 Introduction.- 3.2 Calcium Demand of Higher Plants.- 3.3 Calcium Uptake by the Roots.- 3.4 Long-Distance Transport of Calcium.- 3.4.1 Xylem Transport.- 3.4.2 Phloem Transport.- 3.4.3 Xylem Versus Phloem Transport.- 3.5 Role of Phytohormones and Growth Regulators.- 3.6 Conclusion and Outlook.- 4 Mineral Nutrition and Physiology of Yield Formation - Sink-Source Relationship.- 4.1 Introduction.- 4.2 Effect of Mineral Nutrition on Phytohormone Level and Sink Formation.- 4.3 Effect of Mineral Nutrients on Fertilization.- 4.4 Source-Sink Interactions in Relation to Mineral Nutrition.- 5 Environmental Aspects of Mineral Nutrition.- 5.1 Introduction.- 5.1.1 Nitrogen.- 5.1.2 Heavy Metals.- 5.2 Heavy Metal Toxicity.- 5.3 Heavy Metals in the Food Chain.- 5.4 Heavy Metals in the Soil/Plant System.- 5.4.1 Content of Soils.- 5.4.2 Soil Factors Affecting Heavy Metal Accumulation in Plants.- 5.4.3 Genotypic Differences in Heavy Metal Uptake.- 5.4.4 Distribution Within the Plants and Their Organs.- 5.4.5 Heavy Metal Tolerance.- 5.5 Concluding Remarks.- References.- I.2 The Significance of Rhizosphere Microflora and Mycorrhizas in Plant Nutrition (With 7 Figures).- 1 Introduction.- 2 Energy Supplies in the Rhizosphere.- 2.1 Exudates.- 2.2 Secretions.- 2.3 Plant Mucilages.- 2.4 Mucigel.- 2.5 Lysates.- 3 Microbiology of the Rhizosphere.- 3.1 Populations of Micro-Organisms.- 3.2 Colonization of Roots by Micro-Organisms.- 4 Mathematical Modelling of the Rhizosphere.- 5 Microscopy of the Rhizosphere.- 5.1 Light Microscopy.- 5.2 Scanning Electron Microscopy (S.E.M.).- 5.3 Transmission Electron Microscopy (T.E.M.).- 5.3.1 General Description.- 5.3.2 Origin and Fine Structure of Root Mucilage.- 5.3.3 Microbial Invasion of the Mucilage and the Formation of Mucigel.- 5.3.4 Functions of Root Mucilage and Mucigel.- 5.3.5 The Outer Rhizosphere.- 5.3.6 Invasion of the Root by Microorganisms.- 6 The Role of Rhizosphere Microorganisms in Plant Nutrition.- 6.1 Availability of Nutrients.- 6.1.1 Nutrient Release and Immobilization.- 6.1.2 Nitrification and Denitrification.- 6.1.3 Nitrogen Fixation.- 6.1.4 Phosphate Availability.- 6.1.5 Minor Nutrients.- 6.2 Growth and Morphology of Roots.- 6.2.1 Root Length and Root Hairs.- 6.2.2 Proteoid Roots.- 6.3 Nutrient Uptake Processes.- 6.4 Physiology and Development -.- 7 Myeorrhizas.- 7.1 Plant Responses to Infection.- 7.2 Mechanisms of the Response.- 7.2.1 Nutrient Availability.- 7.2.2 Absorption Characteristics of the Root.- 7.2.3 Absorption by the Fungus Component.- 7.3 Energy Requirements of Myeorrhizas.- 7.4 Overview of Myeorrhizas.- 8 General Conclusions.- References.- I.3 Modern Solution Culture Techniques (With 3 Figures).- 1 Major Differences Between Solution Culture and Soil Culture.- 1.1 Mechanical Support.- 1.2 Spatial Variation in Root Environment Parameters.- 1.3 Temporal Variation in Root Environment Parameters.- 1.3.1 Nutrient Depletion.- 1.3.2 pH Shifts.- 1.4 Root-Microorganism Interactions.- 2 Uses and Limitations of Existing Solution Culture Methods.- 2.1 Non-Renewed or Intermittently Renewed Water Cultures and Sand Cultures.- 2.1.1 Use in Teaching, Demonstration, and Diagnosis.- 2.1.2 Production of Roots for Ion Transport Studies.- 2.1.3 Nutrient Essentiality.- 2.1.4 Effects of Root Environment Parameters.- 2.1.5 Establishment of Critical Tissue Concentrations.- 2.1.6 Control of Plant Nutrient Status.- 2.1.7 Study of Symbiotic Associations with Microorganisms.- 2.1.8 Commercial Crop Production.- 2.2 Mist Culture.- 2.3 Flowing Solution Culture.- 2.3.1 The Flow Rate Problem.- 2.3.2 Composition of Flowing Culture Solutions.- 2.3.3 Research Applications.- 2.3.4 Likely Future Developments.- 2.3.5 Commercial Crop Production.- 3 Summary and Conclusions.- References.- I.4 Diagnosis of Mineral Deficiencies Using Plant Tests (With 5 Figures).- 1 Introduction.- 2 Plant Analysis.- 2.1 Physiological Basis.- 2.2 Choice of Tissue.- 2.3 Factors Affecting the Relationship Between Nutrient Concentration and Yield.- 2.3.1 Plant Development.- 2.3.2 Effects of Changes in Age of Tissue.- 2.3.3 Plant Age and Critical Levels.- 2.3.4 Interactions Between Nutrient Elements.- 2.3.5 Environmental Factors.- 2.3.6 Other Factors Affecting Nutrient Composition.- 3 Physiological and Biochemical Approaches to Diagnosis.- 3.1 Introductory Remarks.- 3.2 Physiological Approaches.- 3.2.1 Physiological Assessment.- 3.2.2 Nutrient Stress.- 3.2.3 Approaches Based on Photosynthesis.- 3.2.4 Other Approaches.- 3.3 Biochemical Approaches.- 3.3.1 Nitrogen and Molybdenum.- 3.3.2 Phosphorus.- 3.3.3 Potassium and Magnesium.- 3.3.4 Iron and Manganese.- 3.3.5 Copper.- 3.3.6 Zinc.- 4 Prospects for the Future.- References.- 1.5 Interactions Between Nutrients in Higher Plants (With 9 Figures).- 1 Introduction.- 2 Interactions Between Nutrients in Monoculture.- 2.1 Interactions Between Nutrients Affecting the Absorption of Nutrients.- 2.1.1 Interactions Occurring in the Soil.- 2.1.2 Absorption from Solution at the Root Surface.- 2.2 Interactions Between Nutrients Affecting the Utilization of Nutrients Within the Plant.- 2.2.1 Distribution.- 2.2.2 Function.- 2.3 Complex Interactions Between Nutrients Involving Several Processes.- 2.3.1 Calcium/Aluminium/Phosphate.- 2.3.2 Zinc/Phosphate.- 3 Interactions Between Nutrients in Mixed Communities.- 4 Conclusion.- References.- I.6 Import and Export of Mineral Nutrients in Plant Roots (With 10 Figures).- 1 Introduction: The Dual Role of Roots in the Evolution of Higher Land Plants.- 2 Relations Between Structure and Transport Functions Along the Length of Roots.- 2.1 The Phenomenon of Variations in Transport Functions Along the Length of Roots.- 2.2 Structure-Function Relations in Various Root Zones.- 2.2.1 The Root Surface.- 2.2.2 The Cortex.- 2.2.3 The Endodermis.- 2.2.4 The Stele.- 3 Variations of Physiological Activities Along the Length of Roots.- 3.1 Growth, Differentiation and Hormonal Gradients.- 3.2 Bioelectrical Fields Along Roots.- 3.3 Differences in Ion Transport Mechanisms Along Roots.- 4 Root-Shoot Interactions and Circulation in the Whole Plant.- 4.1 Some Examples Illustrating General Aspects of Circulation.- 4.2 Nitrogen, Sulphur and Phosphorus.- 5 Conclusion.- References.- I.7 Cycling of Elements in the Biosphere (With 5 Figures).- 1 The Sources of Plant Constituents.- 1.1 Soil and Atmospheric Sources.- 1.2 The Weathering Process.- 2 The Nature of Cycles.- 2.1 The Hydrologic Cycle.- 2.2 The Sedimentary Cycle.- 2.3 The Magmatic Cycle.- 2.4 The Geobiological Cycles.- 3 The Nitrogen Cycle.- 3.1 Overall Cycle Features.- 3.2 Nitrification.- 3.3 Denitrification.- 3.4 Nitrogen Fixation.- 3.5 Human Influences.- 4 The Sulfur Cycle.- 4.1 Comparison with the Nitrogen Cycle.- 4.2 Microbial Oxidation.- 4.3 Sulfate Reduction.- 4.4 Patterns of Sulfur Movement.- 4.5 Human Influences.- 5 The Phosphorus Cycle.- 5.1 Oxidation and Reduction.- 5.2 Movement and Transport in the Biosphere.- 5.3 Human Influences.- 6 Other Elements.- 6.1 Biological Cycling.- 6.2 The Special Significance of Iron and Aluminum.- 6.3 Hydrogen Ion.- 6.4 Characteristics of Sediments.- 6.5 Passive Cycling.- 6.6 Possibilities of Deficiency.- 7 “Open” Versus “Closed” Agricultural Systems.- References.- II. Inorganic Nitrogen Nutrition.- II.1 Physiology, Biochemistry and Genetics of Dinitrogen Fixation (With 3 Figures).- 1 The Nitrogen-Fixing Organisms and the Nitrogenase Reactions.- 1.1 Introduction.- 1.2 Nitrogen Fixation by Free-Living Organisms.- 1.3 Symbiotic Nitrogen Fixation.- 1.4 Substrates of Nitrogenase.- 2 Biochemistry of Nitrogen Fixation.- 2.1 Introduction.- 2.2 Nomenclature of Nitrogenase Proteins.- 2.3 Physicochemical Properties of Nitrogenase Proteins.- 2.4 Metal Clusters in Nitrogenase Proteins.- 2.5 EPR and Mössbauer Spectroscopy on the MoFe Protein.- 2.6 The FeMo Cofactor and the Fe Protein.- 2.7 Nitrogenase Proteins in Photosynthetic Organisms.- 2.8 The Mechanism of Nitrogenase Activity.- 2.8.1 The Roles of the Two Proteins.- 2.8.2 Evidence for Interaction of MgATP and MgADP with the MoFe Protein.- 2.8.3 The Nature of the Active Site(s).- 2.8.4 Pathways of N2-Reduction.- 3 Electron Transport to Nitrogenase.- 3.1 Introduction.- 3.2 Ferredoxins.- 3.3 Flavodoxins.- 3.4 Electron Donors.- 4 Mechanisms to Protect Nitrogenase Against Damage by Oxygen.- 4.1 In Free-Living Organisms.- 4.2 The Heterocysts of Blue-Green Algae.- 4.3 The Role of Leghaemoglobin in Legume Nodules.- 5 Regulation of Nitrogenase Activity and Biosynthesis.- 5.1 Regulation of Nitrogenase Biosynthesis.- 5.2 Regulation of Nitrogenase Activity.- 6 The Hydrogenase-Nitrogenase Relationship.- 7 The Molecular and Genetic Characterization of Nitrogen Fixation Genes.- 7.1 Introduction.- 7.2 The nif Genes.- 7.3 nif Gene Products.- 7.4 Cloning of K. pneumoniae nif Genes.- 7.5 A Physical Map of nif Genes.- 7.6 Interspecies Homology of Nitrogenase Genes.- References.- II.2 Dinitrogen-Fixing Symbioses with Legumes, Non-Legume Angiosperms and Associative Symbioses (With 7 Figures).- 1 Introduction.- 2 Description of the Main Symbiotic Dinitrogen-Fixing Systems.- 2.1 Associative Symbioses.- 2.2 Symbioses with Cyanobacteria.- 2.2.1 Distribution.- 2.2.2 Description and Development.- 2.2.3 N2 Fixation (C2H2 Reduction).- 2.3 Root Nodules with Actinomycetes: Actinorhizas.- 2.3.1 Distribution.- 2.3.2 Description.- 2.3.3 Infection and Development.- 2.3.4 N2 Fixation (C2H2 Reduction).- 2.4 Leguminous Root Nodules with Rhizobium.- 2.4.1 Distribution.- 2.4.2 Description.- 2.4.3 Infection and Nodule Development.- 2.4.4 N2 Fixation (C2H2 Reduction).- 2.5 Non-Leguminous Root Nodules with Rhizobium.- 3 The Dinitrogen-Fixing Micro-Symbionts: Isolates and Cultures.- 3.1 Introduction.- 3.2 Cyanobacteria.- 3.3 Frankia, the Endophyte from the Actinorhizas.- 3.3.1 Isolation and Cultivation.- 3.3.2 Specificity.- 3.3.3 Nutrient Requirements.- 3.3.4 Metabolic Activities.- 3.4 Rhizobium.- 3.4.1 Isolation and Description.- 3.4.2 Taxonomy.- 3.4.3 Metabolism.- 3.4.4 N2 Fixation (C2H2 Reduction).- 3.4.5 Genetics.- 4 Symbiotic Relations.- 4.1 Chemotaxis and Rhizosphere Accumulation.- 4.2 Binding of Rhizobium to Root Hairs.- 4.3 Root Hair Deformation and Infection-Thread Formation.- 4.4 Cell Wall Degrading Enzymes.- 4.5 The Role of Plant Hormones in Nodule Formation.- 4.6 Miscellaneous Problems.- 5 The N2-Fixing System.- 5.1 Introduction.- 5.2 Bacteroids.- 5.3 The Bacteroid-Containing Plant Cells.- 5.4 Nitrogenase.- 5.5 NH3 Assimilation.- 5.6 Oxygen Regulation and Leghaemoglobin.- 5.7 Hydrogen Production and Hydrogen Uptake.- 6 Root Nodules as Part of the Whole Plant.- 7 Concluding Remarks.- References.- II.3 Dinitrogen Fixation in Rhizosphere and Phyllosphere Associations (With 2 Figures).- 1 Introduction.- 2 Characterization of Rhizocoenoses.- 2.1 Sugar Cane — Beijerinckia.- 2.2 Paspalum notatum — Azotobacter paspali.- 2.3 Azospirillum Rhizocoenoses.- 2.3.1 Taxonomy of Azospirillum spp.- 2.3.2 Root Infection.- 2.3.3 Host Plant Specificity.- 2.3.4 Physiology of Azospirillum.- 2.4 Associations with Other N2-Fixing Bacteria.- 3 Agronomic Aspects.- 3.1 Plant Genotype Effects.- 3.2 Environmental Effects.- 3.3 Inoculation.- 4 Phyllosphere Associations.- 4.1 Microorganisms in the Phyllosphere.- 4.2 Nitrogen Fixation in the Phyllosphere.- 5 General Conclusion.- References.- II.4 Uptake and Reduction of Nitrate: Bacteria and Higher Plants.- 1 Introduction.- 2 Available Nitrogen Sources.- 2.1 Species Differences in Ammonium and Nitrate Utilization.- 2.2 Influence of Ammonium or Nitrate on Cation Uptake.- 2.3 Nitrate Uptake.- 2.4 Influence of Ammonium on Nitrate Uptake and Utilization.- 3 Nitrate Reduction.- 3.1 Bacteria.- 3.2 Dissimilatory Nitrate Reductase.- 3.3 Assimilatory Nitrate Reduction in Bacteria.- 3.4 Characterization of Nitrate Reductase from Higher Plants.- 4 Molybdenum in Nitrate Reduction.- 5 Nitrite Reduction.- 5.1 Assimilatory Bacteria.- 5.2 Dissimilatory Bacteria.- 5.3 Nitrite Reductase in Plants.- 6 Location of Enzymes of Nitrate Assimilation in Higher Plants.- 7 Provision of Reductant for Nitrate Assimilation in Higher Plants.- 8 Regulation of Nitrate Reductase in Higher Plants.- 8.1 Substrate.- 8.2 Hormonal.- 8.3 Molybdenum.- 8.4 Ammonium.- 8.5 Light.- 8.6 Genetic.- 8.7 In Vivo Controls.- 9 Concluding Thoughts.- References.- II.5 Uptake and Reduction of Nitrate: Algae and Fungi (With 4 Figures).- 1 Introduction.- 2 Nitrate and Nitrite Reduction in Algae.- 2.1 Nitrate Reductase of Eucaryotic Algae.- 2.2 Nitrate Reductase in Blue-Green Algae.- 2.3 Nitrite Reductase in Algae.- 2.4 Location of Nitrate and Nitrite Reduction in Algal Cells.- 2.5 Stoichiometry Between Nitrate Reduction and O2 Exchange.- 3 Nitrate Uptake in Algae.- 3.1 General Remarks.- 3.2 Substrate Affinity.- 3.3 Light Dependence.- 3.4 pH-Dependence.- 3.5 Dependence on Carbon Sources.- 3.6 Inhibition by Anions.- 3.7 Inhibition by Ammonia and Amino Compounds.- 3.8 Effect of Metabolic Inhibitors and Uncouplers.- 3.9 Stoichiometry Between the Uptake of Nitrate and that of Other Ions.- 3.10 Transport Mechanism.- 4 Nitrite Uptake in Algae.- 5 General Remarks on Regulation of Nitrate and Nitrite Uptake.- 6 Uptake and Reduction of Nitrate and Nitrite in Fungi.- References.- III. Metabolism of Sulfur and Phosphorus.- III.I Reduction and Other Metabolic Reactions of Sulfate (With 6 Figures).- 1 Introduction.- 2 The Place of Sulfate Reduction in the Sulfur Cycle.- 3 Phylogenetic Distribution of Reactions Involving Sulfate Transfer and Reduction.- 4 Sulfate Uptake, Activation and Transfer.- 5 Sulfate Reduction.- 5.1 Detailed Reactions of the Two Assimilatory Pathways.- 5.1.1 The APS Pathway.- 5.1.2 The PAPS Pathway.- 5.2 Location of Sulfate Reduction in Tissues and Organs of Multicellular Plants.- 6 Speculations on the Origin and Evolution of Pathways of Sulfate Reduction.- References.- III.2 Physiology and Metabolism of Phosphate and Its Compounds (With 4 Figures).- 1 Introduction.- 2 Uptake and Transport of Phosphate.- 3 Efflux of Phosphate, and Aspects of Phosphate Deficiency.- 4 Phosphorus Compartments and Pools.- 5 The Form of Phosphorus in the Cell.- 6 Synthesis and Turnover of Phosphorus Compounds.- 7 Dynamics of Phosphate Use in the Plant.- 8 Conclusions.- References.- Author- and Subject Index (see Part B).
1997-2025 DolnySlask.com Agencja Internetowa