Introduction.- Foreword.- The Effect of Demographic Variability and Periodic Fluctuations on Disease Outbreaks in a Vector-Host Epidemic Model.- Evidence for Multiple Transmission Routes for Pseudorabies in Wild Hogs.- Application of Mathematical Epidemiology to crop vector-borne diseases. The cassava mosaic virus disaster case.- A Multistage Mosquito-Centered Mathematical Model for Malaria Dynamics that Captures Mosquito Gonotrophic Cycle Contributions to its Population Abundance and Malaria Transmission.- Charles Darwin meets Ronald Ross: A population-genetic framework for the evolutionary dynamics of malaria.- Identifying the dominant transmission pathway in a multi-stage infection model of the emerging fungal pathogen Batrachochytrium Salamandrivorans on the Eastern Newt.- Reducing the global HIV burden: The importance of uneven exposure to the results of HIV prevention trials.- Infectious Diseases and Our Planet.- Modeling Ebola Transmission Dynamics with Media Effects on Disease and Isolation Rates.
This book features recent research in mathematical modeling of indirectly and directly transmitted infectious diseases in humans, animals, and plants. It compiles nine not previously published studies that illustrate the dynamic spread of infectious diseases, offering a broad range of models to enrich understanding. It demonstrates the capability of mathematical modeling to capture disease spread and interaction dynamics as well as the complicating factors of various evolutionary processes. In addition, it presents applications to real-world disease control by commenting on key parameters and dominant pathways related to transmission. While aimed at early-graduate level students, the book can also provide insights to established researchers in that it presents a survey of current topics and methodologies in a constantly evolving field.