ISBN-13: 9781032582696 / Angielski
ISBN-13: 9781032582696 / Angielski
Induction Machines Handbook: Transients, Control Principles, Design and Testing presents a practical up-to-date treatment of intricate issues with induction machines (IM) required for design and testing in both rather constant- and variable-speed (with power electronics) drives. It contains ready-to-use industrial design and testing knowledge, with numerous case studies to facilitate a thorough assimilation of new knowledge. Individual Chapters 1 through 14 discuss in detail the following: Three- and multiphase IM transients Single-phase source IM transients Super-high-frequency models and behavior of IM Motor specifications and design principles IM design below 100 kW and constant V1 and f1 IM design above 100 kW and constant V1 and f1 IM design principles for variable speed Optimization design Single-phase IM design Three-phase IM generators Single-phase IM generators Linear induction motors Testing of three-phase IMs Single-phase IM testing Fully revised and amply updated to add the new knowledge of the last decade, this third edition includes special sections on Multiphase IM models for transients Doubly fed IMs models for transients Cage-rotor synchronized reluctance motors Cage-rotor PM synchronous motor Transient operation of self-excited induction generator Brushless doubly fed induction motor/generators Doubly fed induction generators with D.C. output Linear induction motor control with end effect Recent trends in IM testing with power electronics Cage-PM rotor line-start IM testing Linear induction motor (LIM) testing This up-to-date book discusses in detail the transients, control principles, and design and testing of various IMs for line-start and variable-speed applications in various topologies, with numerous case studies. It will be of direct assistance to academia and industry in conceiving, designing, fabricating, and testing IMs (for the future) of various industries, from home appliances, through robotics, e-transport, and renewable energy conversion.