• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Implicit Partial Differential Equations » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Implicit Partial Differential Equations

ISBN-13: 9781461271932 / Angielski / Miękka / 2012 / 273 str.

Bernard Dacorogna; Paolo Marcellini
Implicit Partial Differential Equations Bernard Dacorogna Paolo Marcellini 9781461271932 Birkhauser - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Implicit Partial Differential Equations

ISBN-13: 9781461271932 / Angielski / Miękka / 2012 / 273 str.

Bernard Dacorogna; Paolo Marcellini
cena 201,72 zł
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Nonlinear partial differential equations has become one of the main tools of mod- ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematical literature. In this work we present a new family of differential equations called "implicit partial differential equations," described in detail in the introduction (c.f. Chapter 1). It is a class of nonlinear equations that does not include the family of fully nonlinear elliptic pdes. We present a new functional analytic method based on the Baire category theorem for handling the existence of almost everywhere solutions of these implicit equations. The results have been obtained for the most part in recent years and have important applications to the calculus of variations, nonlin- ear elasticity, problems of phase transitions and optimal design; some results have not been published elsewhere.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Differential Equations - Partial
Mathematics > Matematyka stosowana
Mathematics > Systemy liczbowe
Wydawca:
Birkhauser
Seria wydawnicza:
Progress in Nonlinear Differential Equations and Their Appli
Język:
Angielski
ISBN-13:
9781461271932
Rok wydania:
2012
Wydanie:
Softcover Repri
Numer serii:
000303036
Ilość stron:
273
Waga:
0.45 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

"Provides a self-contained development of the new kind of differential equations... Includes many examples helpful in understanding the theory and is well [and] clearly written."

-Mathematical Reviews

"...Topics of the book have important applications in variational calculus, nonlinear elasticity, phase transitions, and optimal design. In particular, Part IV (Chapters 7-9) includes the singular value case, the case of potential wells, and the complex eikonal equation. A lot of background material, as viscosity solutions, quasiconvexity and related topics, piecewise polynomial approximation in Sobolev spaces, convex integration, or nonclassical Vitali-type covering theorems, is presented in the book, which makes it essentially self-contained. Most of the results are original from the authors, some results are published even first time. This makes the book a unique introduction to this new topic, and will be found useful by experts in nonlinear analysis in general and PDEs in particular, as well as by advanced graduate students in this field."

-Zentralblatt Math

1 Introduction.- 1.1 The first order case.- 1.1.1 Statement of the problem.- 1.1.2 The scalar case.- 1.1.3 Some examples in the vectorial case.- 1.1.4 Convexity conditions in the vectorial case.- 1.1.5 Some typical existence theorems in the vectorial case.- 1.2 Second and higher order cases.- 1.2.1 Dirichlet-Neumann boundary value problem.- 1.2.2 Fully nonlinear partial differential equations.- 1.2.3 Singular values.- 1.2.4 Some extensions.- 1.3 Different methods.- 1.3.1 Viscosity solutions.- 1.3.2 Convex integration.- 1.3.3 The Baire category method.- 1.4 Applications to the calculus of variations.- 1.4.1 Some bibliographical notes.- 1.4.2 The variational problem.- 1.4.3 The scalar case.- 1.4.4 Application to optimal design in the vector-valued case.- 1.5 Some unsolved problems.- 1.5.1 Selection criterion.- 1.5.2 Measurable Hamiltonians.- 1.5.3 Lipschitz boundary data.- 1.5.4 Approximation of Lipschitz functions by smooth functions.- 1.5.5 Extension of Lipschitz functions and compatibility conditions.- 1.5.6 Existence under quasiconvexity assumption.- 1.5.7 Problems with constraints.- 1.5.8 Potential wells.- 1.5.9 Calculus of variations.- I First Order Equations.- 2 First and Second Order PDE’s.- 2.1 Introduction.- 2.2 The convex case.- 2.2.1 The main theorem.- 2.2.2 An approximation lemma.- 2.2.3 The case independent of (x, u).- 2.2.4 Proof of the main theorem.- 2.3 The nonconvex case.- 2.3.1 The pyramidal construction.- 2.3.2 The general case.- 2.4 The compatibility condition.- 2.5 An attainment result.- 3 Second Order Equations.- 3.1 Introduction.- 3.2 The convex case.- 3.2.1 Statement of the result and some examples.- 3.2.2 The approximation lemma.- 3.2.3 The case independent of lower order terms.- 3.2.4 Proof of the main theorem.- 3.3 Some extensions.- 3.3.1 Systems of convex functions.- 3.3.2 A problem with constraint on the determinant.- 3.3.3 Application to optimal design.- 4 Comparison with Viscosity Solutions.- 4.1 Introduction.- 4.2 Definition and examples.- 4.3 Geometric restrictions.- 4.3.1 Main results.- 4.3.2 Proof of the main results.- 4.4 Appendix.- 4.4.1 Subgradient and differentiability of convex functions.- 4.4.2 Gauges and their polars.- 4.4.3 Extension of Lipschitz functions.- 4.4.4 A property of the sub and super differentials.- II Systems of Partial Differential Equations.- 5 Some Preliminary Results.- 5.1 Introduction.- 5.2 Different notions of convexity.- 5.2.1 Definitions and basic properties (first order case).- 5.2.2 Definitions and basic properties (higher order case).- 5.2.3 Different envelopes.- 5.3 Weak lower semicontinuity.- 5.3.1 The first order case.- 5.3.2 The higher order case.- 5.4 Different notions of convexity for sets.- 5.4.1 Definitions.- 5.4.2 The different convex hulls.- 5.4.3 Further properties of rank one convex hulls.- 5.4.4 Extreme points.- 6 Existence Theorems for Systems.- 6.1 Introduction.- 6.2 An abstract result.- 6.2.1 The relaxation property.- 6.2.2 Weakly extreme sets.- 6.3 The key approximation lemma.- 6.4 Sufficient conditions for the relaxation property.- 6.4.1 One quasiconvex equation.- 6.4.2 The approximation property.- 6.4.3 Relaxation property for general sets.- 6.5 The main theorems.- III Applications.- 7 The Singular Values Case.- 7.1 Introduction.- 7.2 Singular values and functions of singular values.- 7.2.1 Singular values.- 7.2.2 Functions depending on singular values.- 7.2.3 Rank one convexity in dimension two.- 7.3 Convex and rank one convex hulls.- 7.3.1 The case of equality.- 7.3.2 The main theorem for general matrices.- 7.3.3 The diagonal case in dimension two.- 7.3.4 The symmetric case in dimension two.- 7.4 Existence of solutions (the first order case).- 7.5 Existence of solutions (the second order case).- 8 The Case of Potential Wells.- 8.1 Introduction.- 8.2 The rank one convex hull.- 8.3 Existence of solutions.- 9 The Complex Eikonal Equation.- 9.1 Introduction.- 9.2 The convex and rank one convex hulls.- 9.3 Existence of solutions.- IV Appendix.- 10 Appendix: Piecewise Approximations.- 10.1 Vitali covering theorems and applications.- 10.1.1 Vitali covering theorems.- 10.1.2 Piecewise affine approximation.- 10.2 Piecewise polynomial approximation.- 10.2.1 Approximation of functions of class CN.- 10.2.2 Approximation of functions of class WN,?.- References.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia