• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Implementing Machine Learning for Finance: A Systematic Approach to Predictive Risk and Performance Analysis for Investment Portfolios » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Implementing Machine Learning for Finance: A Systematic Approach to Predictive Risk and Performance Analysis for Investment Portfolios

ISBN-13: 9781484271094 / Angielski / Miękka / 2021 / 182 str.

Tshepo Chris Nokeri
Implementing Machine Learning for Finance: A Systematic Approach to Predictive Risk and Performance Analysis for Investment Portfolios Tshepo Chris Nokeri 9781484271094 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Implementing Machine Learning for Finance: A Systematic Approach to Predictive Risk and Performance Analysis for Investment Portfolios

ISBN-13: 9781484271094 / Angielski / Miękka / 2021 / 182 str.

Tshepo Chris Nokeri
cena 211,32 zł
(netto: 201,26 VAT:  5%)

Najniższa cena z 30 dni: 210,17 zł
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Intermediate-Advanced user level

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Languages - Python
Business & Economics > Finance - Financial Engineering
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484271094
Rok wydania:
2021
Ilość stron:
182
Waga:
0.29 kg
Wymiary:
23.39 x 15.6 x 1.09
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Chapter 1: Introduction to the Financial Markets and Algorithmic Trading 
Foreign exchange market 
- Exchange rate 
- Exchange rates quotation 
The Interbank market 
The retail market 
Brokerage 
- Understanding leverage and margin 
- Contract for difference trading 
The share market 


Raising capital 
- Public listing 
- Stock exchange 
- Share trading 
Speculative nature of foreign exchange market 
Techniques for speculating market movement 
Algorithmic trading 
- Supervised machine learning 
The parametric method 
- The non-parametric method 
Binary classification 
Multiclass classification 
- The ensemble method 
- Unsupervised learning 
- Deep learning 
- Dimension reduction 

Chapter 2: Forecasting Using ARIMA, SARIMA and Additive Model 
Time series in action 
Split data into training and test data 
Test for stationary 
Test for white noise 
Autocorrelation function 
Partial autocorrelation function 
The moving averages smoothing technique 
The exponential smoothing technique 
Rate of return 
The ARIMA Model 
ARIMA Hyperparameter Optimization 
- Develop the ARIMA model 
- Forecast prices using the ARIMA model 
 The SARIMA model 
- Develop SARIMA model 
- Forecast using the SARIMA model 
Additive model 
- Develop the additive model 
- Forecast prices the additive model 
- Seasonal decomposition 
Conclusion 

Chapter 3: Univariate Time Series using Recurrent Neural Nets 
What is deep learning? 
Activation function 
Loss function 
Optimize an artificial neural network 
The sequential data problem 


The recurrent net model 
The recurrent net problem 
The LSTM model 
Gates 
Unfolded LSTM network 
Stacked LSTM network 
LSTM in action 
- Split data into training, test and validation 
- Normalize data 
- Develop LSTM model 
- Forecasting using the LSTM 
- Model evaluation 
- Training and validation loss across epochs 
- Training and validation accuracy across epochs 
Conclusion 

Chapter 4: Discover Market Regimes 
HMM 
HMM application in finance 
- Develop GaussianHMM 
Mean and variance 
Expected returns and volumes 
Conclusions 

Chapter 5: Stock Clustering 
Investment Portfolio Diversification 
Stock market volatility 
K-Means clustering 
K-Means in practice 
Conclusions 

Chapter 6: Future Price Prediction using Linear Regression 
Linear Regression in Practice 
Detect missing values 
Pearson correlation 
Covariance 
Pairwise scatter plot 
Eigen matrix 
Split data into training and test data. 
Normalize data 
Least squares model hyperparameter optimization 
Step 1: Fit least squares model with default hyperparameters 
Step 2: Determine the mean and standard deviation of the cross-validation scores 
Step 3: Determine Hyper-parameters that yield the best score. 
Develop least squares model 
Find an intercept 
Find the estimated coefficient 
Test least squares model performance using SciKit-Learn 
Plotting actual values and predicted values 
Conclusion 

Chapter 7: Stock Market Simulation 
Understanding value at risk 
Estimate VAR using the Variance-Covariance Method 
Understanding Monte Carlo 
Application of Monte Carlo simulation in finance 
- Run Monte Carlo simulation 
- Plot simulations 
Conclusions 

Chapter 8: Market Trend Classification using ML and DL 
Classification in practice 
Data preprocessing 
Split Data into training and test data 
Logistic regression 
- Finalize a logistic classifier 
- Evaluate a logistic classifier 
- Learning curve 
Multilayer layer perceptron 
- Architecture 
- Finalize model 
- Training and validation loss across epochs 
- Training and validation accuracy across epochs 
Conclusions 

Chapter 9: Investment Portfolio and Risk Analysis 
Investment 
Investment Analysis 
Investment Risk Management 
Investment Portfolio Management 
Pyfolio in action 
Performance statistics 
Drawback 
Rate of returns 
Annual rate of return 
Rolling returns 
- Monthly rate of returns 
Conclusions 

Tshepo Chris Nokeri harnesses big data, advanced analytics, and artificial intelligence to foster innovation and optimize business performance. In his functional work, he has delivered complex solutions to companies in the mining, petroleum, and manufacturing industries. He initially completed a bachelor’s degree in information management. He then graduated with an honors degree in business science at the University of the Witwatersrand on a TATA Prestigious Scholarship and a Wits Postgraduate Merit Award. They unanimously awarded him the Oxford University Press Prize. He has authored the Apress book Data Science Revealed: With Feature Engineering, Data Visualization, Pipeline Development, and Hyperparameter Tuning.

Bring together machine learning ()ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science procedures.


The book introduces pattern recognition and future price forecasting that exerts effects on time series analysis models, such as the Autoregressive Integrated Moving Average (ARIMA) model, Seasonal ARIMA (SARIMA) model, and Additive model, and it covers the Least Squares model and the Long Short-Term Memory (LSTM) model. It presents hidden pattern recognition and market regime prediction applying the Gaussian Hidden Markov Model. The book covers the practical application of the K-Means model in stock clustering. It establishes the practical application of the Variance-Covariance method and Simulation method (using Monte Carlo Simulation) for value at risk estimation. It also includes market direction classification using both the Logistic classifier and the Multilayer Perceptron classifier. Finally, the book presents performance and risk analysis for investment portfolios.

By the end of this book, you should be able to explain how algorithmic trading works and its practical application in the real world, and know how to apply supervised and unsupervised ML and DL models to bolster investment decision making and implement and optimize investment strategies and systems.

You will:
  • Understand the fundamentals of the financial market and algorithmic trading, as well as supervised and unsupervised learning models that are appropriate for systematic investment portfolio management
  • Know the concepts of feature engineering, data visualization, and hyperparameter optimization
  • Design, build, and test supervised and unsupervised ML and DL models
  • Discover seasonality, trends, and market regimes, simulating a change in the market and investment strategy problems and predicting market direction and prices
  • Structure and optimize an investment portfolio with preeminent asset classes and measure the underlying risk




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia