• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient

ISBN-13: 9781484265789 / Angielski / Miękka / 2020 / 166 str.

Tanay Agrawal
Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient Tanay Agrawal 9781484265789 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient

ISBN-13: 9781484265789 / Angielski / Miękka / 2020 / 166 str.

Tanay Agrawal
cena 211,32 zł
(netto: 201,26 VAT:  5%)

Najniższa cena z 30 dni: 210,17 zł
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Languages - Python
Computers > Artificial Intelligence - General
Computers > Programming - Open Source
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484265789
Rok wydania:
2020
Ilość stron:
166
Waga:
0.27 kg
Wymiary:
23.39 x 15.6 x 1.02
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

"The author keeps a firm grasp on the subject, going from a detailed description of what hyperparameter tuning is to the effective ways to use it. ... this book would be most useful to scholars and professionals working on machine learning models. Readers looking for implementational assistance with the performance of their models will be the best fit ... ." (Niraj Singh, Computing Reviews, December 2, 2022)

  • ​Chapter 1: Hyperparameters
Chapter Goal: To introduce what hyperparameters are, how they can affect the
model training. Also gives an intuition of how hyperparameter affects general machine
learning algorithms, and what value should we choose as per the training dataset.
Sub - Topics
1. Introduction to hyperparameters.
2. Why do we need to tune hyperparameters
3. Specific algorithms and their hyperparameters
4. Cheatsheet for deciding Hyperparameter of some specific Algorithms.

Chapter 2: Brute Force Hyperparameter Tuning
Chapter Goal: To understand the commonly used classical hyperparameter tuning
methods and implement them from scratch, as well as use the Scikit-Learn library to do so.
Sub - Topics:
1. Hyperparameter tuning
2. Exhaustive hyperparameter tuning methods
3. Grid search
4. Random search
5. Evaluation of models while tuning hyperparameters.

Chapter 3: Distributed Hyperparameter Optimization
Chapter Goal: To handle bigger datasets and a large number of hyperparameter
with continuous search spaces using distributed algorithms and distributed
hyperparameter optimization methods, using Dask Library.
Sub - Topics:
1. Why we need distributed tuning
2. Dask dataframes
3. IncrementalSearchCV

Chapter 4: Sequential Model-Based Global Optimization and Its Hierarchical
Methods
Chapter Goal: A detailed theoretical chapter about SMBO Methods, which uses
Bayesian techniques to optimize hyperparameter. They learn from their previous iteration
unlike Grid Search or Random Search.
Sub - Topics:
1. Sequential Model-Based Global Optimization
2. Gaussian process approach
3. Tree-structured Parzen Estimator(TPE)

Chapter 5: Using HyperOpt
Chapter Goal: A Chapter focusing on a library hyperopt that implements the
algorithm TPE discussed in the last chapter. Goal to use the TPE algorithm to optimize
hyperparameter and make the reader aware of how it is better than other methods.
MongoDB will be used to parallelize the evaluations. Discuss Hyperopt Scikit-Learn and Hyperas with examples.
1. Defining an objective function.
2. Creating search space.
3. Running HyperOpt.
4. Using MongoDB Trials to make parallel evaluations.
5. HyperOpt SkLearn
6. Hyperas

Chapter 6: Hyperparameter Generating Condition Generative Adversarial Neural
Networks(HG-cGANs) and So Forth.
Chapter Goal: It is based on a hypothesis of how, based on certain properties of dataset, one can train neural networks on metadata and generate hyperparameters for new datasets. It also summarizes how these newer methods of Hyperparameter Tuning can help AI to develop further.
Sub - Topics:
1. Generating Metadata
2. Training HG-cGANs
3. AI and hyperparameter tuning

Tanay is a deep learning engineer and researcher, who graduated in 2019 in Bachelor of Technology from SMVDU, J&K. He is currently working at Curl Hg on SARA, an OCR platform. He is also advisor to Witooth Dental Services and Technologies. He started his career at MateLabs working on an AutoML Platform, Mateverse. He has worked extensively on hyperparameter optimization. He has also delivered talks on hyperparameter optimization at conferences including PyData, Delhi and PyCon, India. 

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.

This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you’ll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.

The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you’ll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.

Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.

Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work. 

You will:

  • Discover how changes in hyperparameters affect the model’s performance.
  • Apply different hyperparameter tuning algorithms to data science problems
  • Work with Bayesian optimization methods to create efficient machine learning and deep learning models
  • Distribute hyperparameter optimization using a cluster of machines
  • Approach automated machine learning using hyperparameter optimization



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia