• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

How Many Zeroes?: Counting Solutions of Systems of Polynomials Via Toric Geometry at Infinity » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

How Many Zeroes?: Counting Solutions of Systems of Polynomials Via Toric Geometry at Infinity

ISBN-13: 9783030751760 / Angielski / Miękka / 2022

Pinaki Mondal
How Many Zeroes?: Counting Solutions of Systems of Polynomials Via Toric Geometry at Infinity Mondal, Pinaki 9783030751760 Springer International Publishing - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

How Many Zeroes?: Counting Solutions of Systems of Polynomials Via Toric Geometry at Infinity

ISBN-13: 9783030751760 / Angielski / Miękka / 2022

Pinaki Mondal
cena 241,50
(netto: 230,00 VAT:  5%)

Najniższa cena z 30 dni: 231,29
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!
inne wydania

This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field. The text collects and synthesizes a number of works on Bernstein’s theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein’s original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to second-year graduate students.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometria - Algebraiczna
Wydawca:
Springer International Publishing
Seria wydawnicza:
CMS/CAIMS Books in Mathematics
Język:
Angielski
ISBN-13:
9783030751760
Rok wydania:
2022
Waga:
0.56 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

"The book will appeal to a reader interested on the arithmetic aspects of some natural intersections and interactions between algebraic and convex geometry." (Felipe Zaldívar, zbMATH 1483.13001, 2022)

Introduction.- A brief history of points of infinity in geometry.- Quasiprojective varieties over algebraically closed fields.- Intersection multiplicity.- Convex polyhedra.- Toric varieties over algebraically closed fields.- Number of solutions on the torus: BKK bound.- Number of zeroes on the affine space I: (Weighted) Bézout theorems.- Intersection multiplicity at the origin.- Number of zeroes on the affine space II: the general case.- Minor number of a hypersurface at the origin.- Beyond this book.- Miscellaneous commutative algebra.- Some results related to schemes.- Notation.- Bibliography.

Pinaki Mondal studied at Khulna St. Joseph's School, Barisal Cadet College, University of Saskatchewan and University of Toronto. After a postdoctoral fellowship at the Weizmann Institute and teaching at the University of The Bahamas, he is back in Toronto doing quantitative finance. When not working to safeguard Canadian economy from a collapse, he still makes time to think about algebraic geometry.  

This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field K. The text collects and synthesizes a number of works on Bernstein’s theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein’s original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to a second-year graduate students.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia