1. Surface Self-Assembly of Hydrogen-bonded Frameworks 2. Crystal Engineering of Coordination Networks: Then and Now 3. From Mechanical Properties to Mechanochemistry of Molecular Crystals: Role of Nanointendation and AFM Indentation Techniques in Crystal Engineering 4. A combined theoretical and CSD perspective on s-hole interactions with tetrels, pnictogens, chalcogens, halogens and noble gasses 5. Crystal Engineering and Pharmaceutical Crystallization 6. From molecular electrostatic potential surfaces to practical avenues for directed assembly of organic and metal-containing crystalline materials
Kari Rissanen got his MSc degree in organic chemistry in 1985 after which he pursued PhD studies in the Laboratory of Inorganic Chemistry at the University of Jyväskylä. The PhD work focused on solid-state structural chemistry of small organic molecules. Already during his PhD thesis work Rissanen started his own independent career as a researcher of the Academy of Finland (1988). Since then Rissanen has pioneered the research in supramolecular chemistry in Finland. Rissanen is one of the world-leading experts in supramolecular crystallography, weak intermolecular interactions, especially halogen bonding and anion-p interactions, and new methodologies in crystallography. In addition to his main expertise, Rissanen has also achieved international recognition in the design and synthetic chemistry of novel receptor molecules, new cyclophane hosts, uranyl salophens, and most recently sensor molecules and gelators based on coordination complexes. Rissanen's research has focused on a multitude of chemical systems, but in all studies the governing feature has been the understanding of the interactions involved in the recognition and self-assembly phenomena, and subsequent design and synthesis of functional host and sensor molecules based on this knowledge. The detailed structural studies form the solid basis for the understanding and utilization of weak noncovalent, viz. the supramolecular interactions occurring in recognition and self-assembly events, visualized in the solid state by single crystal X-ray diffraction and solid state NMR, in solution by NMR and in gas phase by mass spectrometry. Rissanen is the first chemist in the history of the Academy of Finland to get nominated twice as the Academy Professor (1st term 2008-12 and 2nd 2013-17), the highest ranking academic position available in Finland. He has been awarded several national scientific prices and awards: Commander, of the Order of the Red Rose of Finland, 2016; Knight, First Class, of the Order of the White Rose of Finland, 2008; Finnish Academy of Science and Letters (1991, PhD thesis prize); the Magnus Ehrnrooth Prize in Chemistry (2005), and the Nanotech Finland Award (2010). Throughout his whole career he has been extremely active both nationally and internationally in various levels of science and university administration, funding and evaluation councils and boards. The major international and national administrative duties include the Finnish representative at the Management Committee of the COST Chemistry Actions D7, D11 (vice-chair) and D31 (chairman), the member of the Research Council for Natural Sciences and Engineering of the Finnish Academy (2004-06); the chairman (2005-06) and expert member (2007-10) of the Steering Committee of the Academy of Finland Nanoscience Research Programme, FinNano.