ISBN-13: 9783540666912 / Angielski / Twarda / 2000 / 489 str.
ISBN-13: 9783540666912 / Angielski / Twarda / 2000 / 489 str.
An outstanding reference book on an exciting topic, reaching out to the 21st century's key technologies. The editors, together with leading experts in the field from both academic research and industry, bring together the latest knowledge on this technique. The book starts with an introduction on the history and fundamentals, multiplexing methods, and noise sources. The following chapters describe in detail recording media, components, channels, platforms for demonstration, and competing technologies such as classical hard disks or optical disks. More than 700 references will make this the ultimate source of information for the years to come. The book is intended for physicists, optical engineers, and executives alike.
I Introduction.- History and Physical Principles.- 1 Holographic Storage Principles.- 1.1 Redundant Storage.- 1.2 Multiplexing.- 1.3 High Data Rate.- 1.4 Rapid Access.- 1.5 Novel Functions.- 2 Historical Development.- 2.1 Bell Labs and the Digital Page.- 2.2 IBM HOSP.- 2.3 RCA Holographic Memory.- 2.4 3M Holographic Data Storage System.- 2.5 Thompson-CSF Read—Write Memory Using Angular Multiplexing.- 2.6 NEC Holographic Coding Plate or Holotablet.- 2.7 Harris-Intertype Wide-Band Recorder.- 2.8 Hitachi Holographic Video Disk.- 2.9 Optical Data Systems Holoscan.- 2.10 Holographic Storage in the Soviet Union.- 2.11 NEC Holographic Disk.- 2.12 MEI Kanji Character Generation System.- 2.13 Tamarack Multistore.- 2.14 The PRISM Test Stand.- 2.15 Stanford University.- 2.16 Holoplex Memory Device for Fingerprint Verification.- 2.17 Rockwell Read-Only Demonstrator.- 2.18 IBM DEMON.- 3 Summary.- References.- Volume Holographic Multiplexing Methods.- 1 Holographic Storage and Retrieval.- 1.1 Overview of Holographic Multiplexing Methods.- 1.2 Holographic Storage Geometries and Imaging Systems.- 2 Scattering from Volume Gratings.- 2.1 Volume Diffraction in the Born Approximation.- 2.2 Volume Diffraction of Scalar Fields.- 2.3 Volume Diffraction Calculations Using the k-Sphere Formulation.- 2.4 Visualization of the Multiplexing Methods on the Grating Space.- 2.5 Grating Manifold Motion and Fractal Multiplexing.- 3 Architectures for Holographic Memories.- 3.1 The Holographic 3-D Disk Geometry.- 3.2 The Holographic Random-Access Memory (HRAM).- 3.3 The Phase Conjugate Geometry.- 4 Summary.- References.- Fundamental Noise Sources in Volume Holographic Storage.- 1 Cross-Talk Noise.- 1.1 Theoretical Formulation.- 1.2 Cross-Talk Noise and Signal-to-Noise Ratio.- 1.3 Storage Capacity.- 2 Intrinsic Scattering Noise.- 3 Noise Gratings.- 4 Conclusion.- References.- II Recording Media.- Bit Error Rate for Holographic Data Storage.- 1 Definition of Bit Error Rate.- 2 BER in Terms of Pixel Distribution Functions.- 3 Experimental Distributions of CCD Pixel Values.- 4 Applications.- References.- Media Requirements for Digital Holographic Data Storage.- 1 Ideal Media Parameters.- 1.1 Optical Quality.- 1.2 Sensitivity.- 1.3 Dynamic Range.- 1.4 Absorption.- 1.5 Volatility.- 2 Example Materials.- 3 Stability of Stored Data.- 3.1 Dark Decay.- 3.2 Decay During Readout: Fixing.- 3.3 Two-Color Recording.- 4 Hologram Fidelity and Bit Error Rate.- 5 Conclusions.- References.- Inorganic Photorefractive Materials.- 1 Charge Transport.- 2 Storage Properties: Dark Storage Time, Response Time, Capacity, Sensitivity.- 3 Theoretical Performance Limits.- 4 Various Crystals.- 5 Nondestructive Readout.- 6 Conclusions.- References.- Hologram Fixing and Nonvolatile Storage in Photorefractive Materials.- 1 Thermally Assisted Ionic Fixing.- 1.1 Hologram Fixing and Ionic Conduction in LiNbO3.- 1.2 Lifetime of Fixed Ionic Gratings.- 1.3 High-Low Fixing.- 2 Fixing by Spontaneous Polarization Modulation.- 3 Two-Photon Holographic Recording in Stoichiometric Lithium Niobate.- 3.1 Undoped Stoichiometric Lithium Niobate.- 3.2 Doped Stoichiometric Lithium Niobate.- 3.3 Summary on Two-Photon Recording in LiNbO3 ..- References.- Two-Color Holography in Lithium Niobate.- 1 Materials.- 2 Experimental.- 3 Spectroscopy and Sensitization.- 4 Photorefractive Properties.- 4.1 Sensitivity.- 4.2 Gating Ratio.- 4.3 Dynamic Range.- 4.4 Dark Decay.- 4.5 The Role of Iron.- 5 Conclusion.- References.- Overview of Photorefractive Polymers for Holographic Data Storage.- 1 Brief History of Photorefractive Polymers.- 2 Physics and Chemistry of Photorefractive Polymers.- 2.1 Photogeneration.- 2.2 Transport.- 2.3 Index Change: Electro-Optic and Orientational Effects.- 3 Performance of Current Photorefractive Polymers.- 3.1 Spectral Sensitivity.- 3.2 Dynamic Range.- 3.3 Material Stability.- 3.4 Speed.- 3.5 Applications.- 4 Trends and Outlook.- References.- Photopolymer Systems.- 1 Introduction.- 2 Chemistry of Photopolymer Systems.- 2.1 Monomers.- 2.2 Photoinitiation Systems.- 2.3 Binders.- 3 Recording Characteristics of Photopolyrners.- 4 Recording Mechanism.- 4.1 Refractive Index Changes.- 4.2 Component Segregation.- 5 Recording Thick Photopolymer Holograms.- 5.1 Light Absorption.- 5.2 Low Viscosity.- 6 Image Quality in Photopolymer Holograms.- 6.1 Shrinkage.- 7 Data Storage in Photopolymer Holograms.- 7.1 Multiplexing.- 7.2 Data Page Recording.- 8 Summary.- References.- Photopolymers for Digital Holographic Data Storage.- 1 Hologram Formation in Photopolymer Systems.- 2 Photopolymer Materials.- 3 Formation of Thick, Optically Flat Media.- 4 Holographic Characterization of Photopolymer Media.- 4.1 Recording-Induced Bragg Detuning.- 4.2 Dynamic Range.- 5 Holographic Digital Data Storage in Photopolymer Media.- 6 Summary.- References.- Photoaddressable Polymers.- 1 Photoaddressable Polymers.- 1.1 Photochemistry of Azobenzene.- 1.2 Azobenzene Containing Polymers.- 1.3 Liquid Crystalline Side Chain Polymers.- 2 Materials Under Investigation.- 2.1 The Choice of the Main Chain.- 2.2 The Spacer.- 2.3 The Choice of the Azo Group.- 2.4 The Choice of the Mesogenic Group.- 2.5 The Azo Group Concentration.- 3 State of the Art in the Literature.- 4 Photoaddressable Polymers from Bayer.- 5 Photoaddressable Polymers Used in Holographic Data Storage.- 6 Open Questions and Outlook.- References.- III Components.- Laser Sources.- 1 Laser Requirements.- 2 Diode-Pumped Solid-State Lasers.- 3 Semiconductor Lasers.- References.- Beam Deflectors and Spatial Light Modulators for Holographic Storage Application.- 1 Description of the Holographic Disk System.- 2 Recording Density.- 3 SLM Characteristics and System SNR.- 4 Recording Rate.- 5 Beam Deflector for Holographic Data Readout.- References.- Beam Conditioning Techniques for Holographic Recording Systems.- 1 Defocusing.- 2 Random Phase Masks.- 3 Pseudo-Random Phase Masks.- 4 Axicons.- 5 Discussion and Summary.- References.- Detector Arrays for Digital Holographic Storage Applications.- 1 General Considerations for Detector Arrays.- 1.1 Size, Power and Cost.- 1.2 Number of Pixels, Readout Rate, and Pixel Size Considerations.- 1.3 Noise, Dynamic Range, and Analog-to-Digital Converter Resolution.- 2 Detector Array Choices.- 2.1 Quantum Efficiency.- 2.2 Noise.- 3 Readout Rate.- 4 System Implementation.- 5 Conclusion.- References.- IV Channels.- Modulation Codes for Holographic Recording.- 1 Block Codes.- 1.1 Correlation Detection and Balanced Block Codes.- 1.2 Sparse Block Codes.- 1.3 Parity Thresholding.- 2 Strip Codes.- 2.1 Balanced and Pseudo-Balanced Strip Codes.- 2.2 Inter-Pixel Interference and Low-Pass Codes.- 2.3 Combined Constant-Weight Low-Pass Codes.- References.- Interleaving and Error Correction for Holographic Storage.- 1 Capacity.- 2 Error Correction.- 3 Interleaving.- 4 Conclusions.- References.- Equalization for Volume Holographic Data Storage Systems.- 1 Channel Modeling.- 2 Equalization Methods.- 2.1 Zero Forcing Equalization.- 2.2 LMMSE Equalization.- 2.3 Partial Response (PR) Equalization.- 3 Equalization Results.- 4 Implementation Issues.- 5 Summary.- References.- Gray-Scale Data Pages for Digital Holographic Data Storage.- 1 Motivation for Gray-Scale.- 2 Predistortion.- 3 Encoding Digital Data into Gray-Scale Pixels.- 4 Capacity Estimation.- 5 Optimizing the Error Correction Coding to Obtain User Capacity.- 6 Summary.- References.- V Demonstration Platforms.- System Optimization for Holographic Data Storage Systems.- 1 Noise.- 2 Camera Quantization.- 3 Choice of Fill-Factors and Apertures.- 4 Capacity-Estimation Procedure.- 5 Choice of ECC Design Point: Effect of Variations in Diffraction Efficiency.- 6 Summary.- References.- Tamarack Optical Head Holographic Storage.- 1 Roots.- 2 Design Evolution.- 3 Final System Approach.- 3.1 Requirements.- 3.2 Optical Head.- 3.3 Media Disk.- 3.4 Data Format.- 4 Holographic Optical Head.- 4.1 Reference Path Optical Design.- 4.2 Object Path Optical Design.- 5 Mechanical Design.- 5.1 Page Motor Design.- 5.2 HOH-Media Positioning.- 5.3 Changer.- 6 Summary.- High-Density, High-Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform.- 1 Materials.- 2 Multiplexing Methods.- 3 Components.- 4 Holographic Demonstration System.- 5 System Evolution.- 6 Summary.- References.- IBM Holographic Digital Data Storage Test Platforms.- 1 PRISM Photorefractive Materials Tester.- 2 DEMON I Holographic Data Storage Engine.- 3 DEMON II Advanced Holographic Digital Data Storage Engine.- 4 Innovative Optics.- 4.1 Axicons.- 4.2 Aspherical Apodizer.- References.- Digital Holographic Demonstration Systems by Stanford University and Siros Technologies.- 1 Optical Architectures.- 2 Capacity Versus Transfer Rate Tradeoff.- 3 Demonstration Platforms.- 4 The Stanford University all Digital System Demonstration (Science, 1994).- 5 The Siros First Fully Automated Video Demonstration (1995).- 6 The Siros Fully Automated System with Electronic Readout at Video Rates (PRISM, 1996).- 7 The Stanford University and Siros Fully Electronic Data Readout System Achieving 1 Gbit/s (HDSS, 2000).- 8 The Stanford University and Siros 100-Gbytes Capacity and 1 Gbit/s Readout System Demonstrator.- References.- Holographic Read-Only Memory.- 1 Specifications.- 2 Recorder.- 3 Reader.- 4 Replication.- Digital Holographic Data Storage with Fast Access.- 1 Introduction.- 2 System Architecture.- 3 System Operation.- References.- A Demonstration Platform for Phase-Coded Multiplexing.- 1 Phase-Coded Multiplexing.- 1.1 Phase Code Generation.- 1.2 Arithmetic Image Operations.- 2 Design and Implementation of the Demonstrator.- 3 Experimental Results.- 3.1 Arithmetic Image Operations.- 3.2 Data Encryption.- 4 Summary.- References.- Volume Holographic Optical Correlators.- 1 Optical Correlation.- 2 Volume Holographic Correlators.- 3 Volume Holographic Database System Architecture.- 3.1 Associative Recall with Binary Data.- 3.2 Associative Recall with Image Data.- 4 Fuzzy Volume Holographic Search Engine.- 4.1 All-Optical Search-and-Retrieve Demonstration.- 5 Evaluation of Associative Recall.- 6 Conclusions.- References.- VI Competing Technologies.- The Continuing Evolution of Magnetic Hard Disk Drives.- 1 Areal Density.- 2 Magnetic Recording Head Physics GMR,.- 3 Magnetic Disk Design and Physical Spacing.- 4 The Mechanical HDD Design and Form Factor Evolution.- 5 Price.- 6 Performance and Coding.- 7 Super Paramagnetism and “Limits” for Magnetic Recording.- 8 Conclusion.- References.- Optical Disk Storage Roadmap.- 1 Product Categories.- 2 Technology Status and Outlook.- 3 Summary.- References.- Alternative Storage Techniques.- 1 Three-Dimensional Optical Recording.- 1.1 Electron Trapping Optical Memory.- 1.2 Liquid Crystal Optical Disk.- 1.3 Surface-Enhanced Raman Optical Data Storage.- 1.4 Optical Tape Technology.- 2 New Storage Forms.- 2.1 Persistent Spectral Hole Burning.- 2.2 Two-Photon Three-Dimensional Recording.- 2.3 Charged Particle Beam Technology.- 2.4 Optical Storage Card.- 2.5 Scanning Probe Storage.- 3 Conclusions.- References.
Demetri Psaltis is a Professor of Optics, Dean of engineering at Ecole Polytechnique Fédérale de Lausanne. He is a fellow of the Optical Society of America and the Society for Photo-optical Systems Engineering (SPIE).
Holographic Data Storage is an outstanding reference book on an exciting topic reaching out to the 21st century's key technologies. The editors, Hans J. Coufal (IBM), Demetri Psaltis (CalTech), and Glenn Sincerbox (University of Arizona), together with leading experts in this area of research from both academic research and industry, bring together the latest knowledge on this technique. The book starts with an introduction on the history and fundamentals, multiplexing methods, and noise sources. The following chapters describe in detail recording media, components, channels, platforms for demonstration, and competing technologies such as classical hard disks or optical disks. More than 700 references make this book the ultimate source of information for the years to come. The book is intended for physicists, optical engineers, and executives alike.
1997-2024 DolnySlask.com Agencja Internetowa